
Search
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Outline

• Knowledge processing
• Search vs Computation
• Search
• Search Component Definitions
• Examples
• Graphs and Trees
• Problems that need solving when designing Search solution

3

Knowledge Processing

4

Knowledge Processing in general
• Task: use knowledge represented in system plus new knowledge and produce a

result:
• Add knowledge to knowledge base
• Find inconsistencies in knowledge base
• Answer user question

make implicit knowledge explicit
• Approaches:

• Search (produce a certain result or new consistent knowledge base)
• Apply procedural knowledge (computation)

5

General Problems

• What parts of the knowledge base are needed?
• What parts of the knowledge base must be changed (frame problem)?
• What pieces of knowledge are applicable?
• What concrete piece of knowledge to choose next?

6

Search versus Computation

7

Search versus Computation

• Deep down in our computers everything is a computation
• On higher levels, there are different computation processes:

1. Processes where each step is always necessary to achieve their goals
 computation

2. Processes where after they finished you can identify steps that did not
contribute to achieving the goals
 search

8

What does computation offer?

• Usually run time is predictable
• No dealing with choices
• No unnecessary steps

• Implicit knowledge representation
 difficult to know what is going on

• Not always possible to achieve
 Nice to have, but in AI systems often not possible

9

Search

10

Search Problems

11

Search: Basic Definitions

Search is at the core of many systems that seem to be
intelligent

• Learning: search for a structure that explains/
predicts/justifies some experiences (or that comes
very near to it)

• Planning: search for a series of decisions that best
achieves a goal while fulfilling certain conditions

• Deduction: search for a justification for a certain fact
• Natural language understanding: search for the best

interpretation of a text
• …

12

How is "intelligence" achieved?

• By defining a good search model
• By finding good controls for search processes

But: do not expect your system to be good for every problem instance it can
theoretically solve!

No free lunch theorem:
“For every search system there is a search instance that shows the worst case

behavior“

13

Definitions

14

General search knowledge

In this course we are going to first define a general search paradigm
• A bunch of formalization of the fundamental pieces we need for a search
• We’ll discuss which pieces we need for this in the remainder of this slide deck

Then we will introduce 3 sub-variants of this general search paradigm
• Set-based search, And-tree-based search, Or-tree-based search
• Each of these come with a basic core design that fulfills the general search

knowledge requirement
• They also each come with some simpler components into which you fit

application knowledge to make that search work for your specific problem

15

3 sub-variants

Set-based Search
• Good for local search (low impact on space needs)
• Good for greedy solutions like hill-climbing solutions (simple algorithms that don’t need

history)
• Often lose guarantee of optimization but often can find good solutions fast

And-tree-based Search
• Good for optimization problems

• Structure an exhaustive search for all options and then return the optimal option
• Tree can be bounded (pruned) (branch-and-bound algorithms – CPSC 413)

• Good for problems where you need to solve all sub-problems and combine them
• Take a lot of space and computation (but that’s how we get optimal results)

Or-tree-based Search
• Good for finding one valid solution (like hard constraint satisfaction), but unlike set

based search designed so we can keep a history so that we don’t repeat steps when one
path of search fails, less space than and-tree generally

16

Model

17

Basic Definitions (I)

Search Model
𝑨𝑨 = (𝑺𝑺,𝑻𝑻)
𝑺𝑺 set of possible states

𝑻𝑻 ⊆ 𝑺𝑺 × 𝑺𝑺 transitions between states


• Defines main data structure and
possibilities (space)

• Tells us what the control can work with
• Limits the choices of the control

Search Problems Are Models

18

Basic Definitions (I)

Search Model
𝑨𝑨 = (𝑺𝑺,𝑻𝑻)

 𝑺𝑺 set of possible states

 𝑻𝑻 ⊆ 𝑺𝑺 × 𝑺𝑺 transitions between states
“N”

“E”

Two transitions from state 1

𝑺𝑺 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠6}

𝑠𝑠1, 𝑠𝑠2 ∈ 𝑻𝑻
𝑠𝑠1, 𝑠𝑠3 ∈ 𝑻𝑻

19

Process

20

Basic Definitions (II)

Search Process
𝑷𝑷 = (𝑨𝑨,𝑬𝑬𝑬𝑬𝑬𝑬,𝑲𝑲)

 𝑨𝑨 search model
 𝑬𝑬𝑬𝑬𝑬𝑬 environment of process
 (sometimes your configuration of algorithm)
 𝑲𝑲: 𝑺𝑺 × 𝑬𝑬𝑬𝑬𝑬𝑬 → 𝑺𝑺 search control is a function 𝑲𝑲 transitioning from

 current state to next state (based on
 possible additional environment input)

 𝑲𝑲 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠𝑠 where 𝑠𝑠, 𝑠𝑠′ ∈ 𝑻𝑻, 𝑒𝑒 ∈ 𝑬𝑬𝑬𝑬𝑬𝑬

• Defines how to deal with indeterminism of search model.
• Has to deal with all possible states and all searches you want to perform

21

Instance

22

Basic Definitions (III)

Search Instance
𝑰𝑰𝑰𝑰𝑰𝑰 = (𝑠𝑠0,𝑮𝑮)

 𝑠𝑠0 ∈ 𝑺𝑺 start state for the instance

 𝑮𝑮: 𝑺𝑺 → {𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏} goal condition (function on current state that halts)
 𝑮𝑮 𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 where 𝑠𝑠𝑖𝑖 ∈ 𝑺𝑺, and result is yes if search is done, no otherwise

• Defines concrete input for a search run
• Defines when search ends (by choice)
• Normally is generated out of user input

23

Derivation

24

Basic Definitions (IV)

Search Derivation:
𝑷𝑷 applied on 𝑰𝑰𝑰𝑰𝑰𝑰 leads to a sequence of states
𝑠𝑠0, … , 𝑠𝑠𝑖𝑖 , …
with 𝑲𝑲 𝑠𝑠𝑖𝑖 , 𝑒𝑒𝑖𝑖 = 𝑠𝑠𝑖𝑖+1, 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1 ∈ 𝑺𝑺, 𝑒𝑒𝑖𝑖 ∈ 𝑬𝑬𝑬𝑬𝑬𝑬

1. Protocols a search run
2. Needed to analyze quality of search control

• distinguish between necessary and unnecessary steps
• compare with shortest possible sequence of states that leads to a solution

3. Might be looked at to determine solution

25

Examples

26

Example: Traveling in Romania

• State space model:
• Cities = S

• Transitions:
• Roads = T

• Go to adjacent city
• cost = distance

• Start state :
• 𝑠𝑠0 = ′𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

• Goal test:
• 𝑮𝑮 ′𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → 𝒚𝒚𝒚𝒚𝒚𝒚
• 𝑮𝑮 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 𝒏𝒏𝒏𝒏

• if state ! = ′𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Travel from Arad to Bucharest

27

What’s in a State Space?
The world state includes every last detail of the environment

28

What’s in a State Space?

• Problem: Pathing
• States: (x,y) location (make up S)
• Actions: NSEW (help us decide T)
• Successor: update location only (make T)
• Goal test: is (x,y)= END (make G)

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

29

What’s in a State Space?

• Problem: Pathing
• States: (x,y) location (make up S)
• Actions: NSEW (help us decide T)
• Successor: update location only (make T)
• Goal test: is (x,y)= END (make G)

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location

and possibly a dot boolean
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

30

State Space Sizes?

• World state:
• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?
 120x(230)x(122)x4
• States for pathing?
 120
• States for eat-all-dots?
 120x(230)

31

Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?

• (agent position, dot booleans,
• power pellet booleans, remaining scared time)

32

Graphs? Trees?

33

Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

34

Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

35

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

𝑠𝑠0
b

b G a

a

G

a G b G

… …

𝒔𝒔𝟎𝟎 𝑮𝑮 𝑺𝑺𝒊𝒊 = 𝒚𝒚𝒚𝒚𝒚𝒚

b

a

State Space Graphs vs. Search Trees

36

State Space Graphs

• State space graph: A mathematical
representation of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

37

State Space Graphs

• State space graph: A mathematical
representation of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

38

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

39

Problems that need solving

40

Problems to solve when designing
search model and process
• Combine

1. application knowledge and
2. general search knowledge (from search paradigms [ex. set, and, or, …])

• Define what input knowledge is necessary
• Define outside influences

• Select search paradigm
• Define search control knowledge
 part from application, part from paradigm

• Look for limitations in knowledge

41

Search States

42

Search States: General Comments

In general, they contain information about
• application
• past search
• future possibilities
• particular user interest (i.e. input; instance).

43

State vs Environment

• Data from outside of knowledge base and given instance
 environment
• Example: new sensor data, changes in the world the system acts in, new tasks to be

scheduled

• Data that never changes during search
 environment
• Example: cost-profit vectors

• Data describing internal beliefs, (partial) solutions, results of reasoning and
everything not mentioned above
 state

44

Transitions

45

Transitions: General Comments (I)

In general, they connect two states:

• Directed relation: (s1,s2) means you can go from s1 to s2 (not vice versa)

• Based on rules from
• Application area
• Semantics of states

46

Transitions: General Comments (II)

Big problem:
relation, i.e. there might be many states you can go to from a particular state
 the less the better

Use of more application knowledge in both states and rules for transitions can
reduce number of potential successor states.

But: you can lose short search derivations and even correctness and completeness of
algorithm

 less transitions vs better search control

47

Processes

48

Search Processes: General Comments

• Main tasks
• Selection of the next search state
• Integration of environment information

• Usually, many processes possible to a given search model
•  selection of search control essential for efficiency of search system

(will return to search controls but first talk about types of search)

49

Summary

50

Summary

• Search is a process where after they finished you can identify steps that did not
contribute to achieving the goals

• Intelligence Achieved by
• defining a good search model
• finding good controls for search processes

• There is always a worst case
• You need to define a Model and Process, you start these on an Instance which

creates a Derivation (history of you search)
• Search spaces are often really really large (This is fundamental problem)
• Can use graphs and trees to manage search space exploration
• What problems do we have to solve when designing search solutions

Next…set-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Search
	Outline
	Knowledge Processing
	�Knowledge Processing in general
	General Problems
	Search versus Computation
	Search versus Computation
	What does computation offer?
	Search
	Search Problems
	Search: Basic Definitions
	How is "intelligence" achieved?
	Definitions
	General search knowledge�
	3 sub-variants
	Slide Number 16
	Basic Definitions (I)
	Basic Definitions (I)
	Slide Number 19
	Basic Definitions (II)
	Slide Number 21
	Basic Definitions (III)
	Slide Number 23
	Basic Definitions (IV)
	Examples
	Example: Traveling in Romania
	What’s in a State Space?
	What’s in a State Space?
	What’s in a State Space?
	State Space Sizes?
	Safe Passage
	Graphs? Trees?
	Search Trees
	Search Trees
	State Space Graphs vs. Search Trees
	State Space Graphs
	State Space Graphs
	State Space Graphs vs. Search Trees
	Problems that need solving
	Problems to solve when designing �search model and process
	Slide Number 41
	Search States: General Comments
	State vs Environment
	Slide Number 44
	Transitions: General Comments (I)
	Transitions: General Comments (II)
	Slide Number 47
	Search Processes: General Comments
	Summary
	Summary
	Next…set-based search

