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Outline

• Knowledge processing
• Search vs Computation
• Search
• Search Component Definitions
• Examples
• Graphs and Trees
• Problems that need solving when designing Search solution



3

Knowledge Processing
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Knowledge Processing in general
• Task: use knowledge represented in system plus new knowledge and produce a 

result:
• Add knowledge to knowledge base
• Find inconsistencies in knowledge base
• Answer user question

make implicit knowledge explicit
• Approaches:

• Search (produce a certain result or new consistent knowledge base)
• Apply procedural knowledge (computation)
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General Problems

• What parts of the knowledge base are needed?
• What parts of the knowledge base must be changed (frame problem)?
• What pieces of knowledge are applicable?
• What concrete piece of knowledge to choose next?
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Search versus Computation
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Search versus Computation

• Deep down in our computers everything is a computation
• On higher levels, there are different computation processes:

1. Processes where each step is always necessary to achieve their goals
 computation

2. Processes where after they finished you can identify steps that did not 
contribute to achieving the goals
 search
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What does computation offer?

• Usually run time is predictable
• No dealing with choices
• No unnecessary steps

• Implicit knowledge representation
 difficult to know what is going on

• Not always possible to achieve
 Nice to have, but in AI systems often not possible
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Search
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Search Problems
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Search: Basic Definitions

Search is at the core of many systems that seem to be 
intelligent

• Learning: search for a structure that explains/ 
predicts/justifies some experiences (or that comes 
very near to it)

• Planning: search for a series of decisions that best 
achieves a goal while fulfilling certain conditions

• Deduction: search for a justification for a certain fact
• Natural language understanding: search for the best 

interpretation of a text
• …
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How is "intelligence" achieved? 

• By defining a good search model
• By finding good controls for search processes

But: do not expect your system to be good for every problem instance it can 
theoretically solve!

No free lunch theorem:
“For every search system there is a search instance that shows the worst case 

behavior“
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Definitions
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General search knowledge

In this course we are going to first define a general search paradigm
• A bunch of formalization of the fundamental pieces we need for a search
• We’ll discuss which pieces we need for this in the remainder of this slide deck

Then we will introduce 3 sub-variants of this general search paradigm
• Set-based search, And-tree-based search, Or-tree-based search
• Each of these come with a basic core design that fulfills the general search 

knowledge requirement
• They also each come with some simpler components into which you fit 

application knowledge to make that search work for your specific problem
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3 sub-variants

Set-based Search
• Good for local search (low impact on space needs)
• Good for greedy solutions like hill-climbing solutions (simple algorithms that don’t need 

history)
• Often lose guarantee of optimization but often can find good solutions fast

And-tree-based Search
• Good for optimization problems

• Structure an exhaustive search for all options and then return the optimal option
• Tree can be bounded (pruned) (branch-and-bound algorithms – CPSC 413)

• Good for problems where you need to solve all sub-problems and combine them
• Take a lot of space and computation (but that’s how we get optimal results)

Or-tree-based Search
• Good for finding one valid solution (like hard constraint satisfaction), but unlike set 

based search designed so we can keep a history so that we don’t repeat steps when one 
path of search fails, less space than and-tree generally
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Model
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Basic Definitions (I)

Search Model 
𝑨𝑨 = (𝑺𝑺,𝑻𝑻)
𝑺𝑺 set of possible states

𝑻𝑻 ⊆ 𝑺𝑺 × 𝑺𝑺 transitions between states


• Defines main data structure and 
possibilities (space)

• Tells us what the control can work with
• Limits the choices of the control

Search Problems Are Models
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Basic Definitions (I)

Search Model 
𝑨𝑨 = (𝑺𝑺,𝑻𝑻)

     𝑺𝑺                     set of possible states

     𝑻𝑻 ⊆ 𝑺𝑺 × 𝑺𝑺     transitions between states
“N”

“E”

Two transitions from state 1

𝑺𝑺 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, 𝑠𝑠5, 𝑠𝑠6}

𝑠𝑠1, 𝑠𝑠2 ∈ 𝑻𝑻
𝑠𝑠1, 𝑠𝑠3 ∈ 𝑻𝑻
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Process
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Basic Definitions (II)

Search Process 
𝑷𝑷 = (𝑨𝑨,𝑬𝑬𝑬𝑬𝑬𝑬,𝑲𝑲)

 𝑨𝑨                search model
 𝑬𝑬𝑬𝑬𝑬𝑬                                       environment of process 
      (sometimes your configuration of algorithm)
 𝑲𝑲:  𝑺𝑺 × 𝑬𝑬𝑬𝑬𝑬𝑬 → 𝑺𝑺               search control is a function 𝑲𝑲 transitioning from 

     current state to next state (based on  
     possible additional environment input)            

             𝑲𝑲 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠𝑠 where 𝑠𝑠, 𝑠𝑠′ ∈ 𝑻𝑻, 𝑒𝑒 ∈ 𝑬𝑬𝑬𝑬𝑬𝑬
 
• Defines how to deal with indeterminism of search model.
• Has to deal with all possible states and all searches you want to perform
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Instance
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Basic Definitions (III)

Search Instance 
𝑰𝑰𝑰𝑰𝑰𝑰 = (𝑠𝑠0,𝑮𝑮)

     𝑠𝑠0 ∈ 𝑺𝑺                              start state for the instance 

     𝑮𝑮: 𝑺𝑺 → {𝒚𝒚𝒚𝒚𝒚𝒚,𝒏𝒏𝒏𝒏}           goal condition (function on current state that halts)
  𝑮𝑮 𝑠𝑠𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟              where 𝑠𝑠𝑖𝑖 ∈ 𝑺𝑺, and result is yes if search is done, no otherwise
 
• Defines concrete input for a search run
• Defines when search ends (by choice)
• Normally is generated out of user input
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Derivation
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Basic Definitions (IV)

Search Derivation:
𝑷𝑷 applied on 𝑰𝑰𝑰𝑰𝑰𝑰 leads to a sequence of states 
𝑠𝑠0, … , 𝑠𝑠𝑖𝑖 , …                  
with 𝑲𝑲 𝑠𝑠𝑖𝑖 , 𝑒𝑒𝑖𝑖 = 𝑠𝑠𝑖𝑖+1,    𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖+1 ∈ 𝑺𝑺,  𝑒𝑒𝑖𝑖 ∈ 𝑬𝑬𝑬𝑬𝑬𝑬
 
1. Protocols a search run
2. Needed to analyze quality of search control

• distinguish between necessary and unnecessary steps
• compare with shortest possible sequence of states that leads to a solution

3. Might be looked at to determine solution
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Examples
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Example: Traveling in Romania

• State space model:
• Cities = S

• Transitions:
• Roads = T 

• Go to adjacent city 
• cost = distance

• Start state :
• 𝑠𝑠0 = ′𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

• Goal test:
• 𝑮𝑮 ′𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → 𝒚𝒚𝒚𝒚𝒚𝒚
• 𝑮𝑮 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 𝒏𝒏𝒏𝒏                   

• if state ! =  ′𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵Travel from Arad to Bucharest
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What’s in a State Space?
The world state includes every last detail of the environment
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What’s in a State Space?

• Problem: Pathing
• States: (x,y) location (make up S)
• Actions: NSEW (help us decide T)
• Successor: update location only (make T)
• Goal test: is (x,y)= END (make G)

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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What’s in a State Space?

• Problem: Pathing
• States: (x,y) location (make up S)
• Actions: NSEW (help us decide T)
• Successor: update location only (make T)
• Goal test: is (x,y)= END (make G)

• Problem: Eat-All-Dots
• States: {(x,y), dot booleans}
• Actions: NSEW
• Successor: update location 

and possibly a dot boolean
• Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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State Space Sizes?

• World state:
• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

• How many
• World states?
 120x(230)x(122)x4
• States for pathing?
 120
• States for eat-all-dots?
 120x(230)
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Safe Passage

• Problem: eat all dots while keeping the ghosts perma-scared
• What does the state space have to specify?

• (agent position, dot booleans, 
• power pellet booleans, remaining scared time)
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Graphs? Trees?
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Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree
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Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures
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Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

𝑠𝑠0
b

b G a

a

G

a G b G

… …

𝒔𝒔𝟎𝟎 𝑮𝑮 𝑺𝑺𝒊𝒊 = 𝒚𝒚𝒚𝒚𝒚𝒚

b

a

State Space Graphs vs. Search Trees
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State Space Graphs

• State space graph: A mathematical 
representation of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny 
search problem
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State Space Graphs

• State space graph: A mathematical 
representation of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both 
on demand – and 
we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph
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Problems that need solving
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Problems to solve when designing 
search model and process
• Combine 

1. application knowledge and 
2. general search knowledge (from search paradigms [ex. set, and, or, …])

• Define what input knowledge is necessary
• Define outside influences

• Select search paradigm 
• Define search control knowledge
 part from application, part from paradigm

• Look for limitations in knowledge 
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Search States
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Search States: General Comments

In general, they contain information about
• application
• past search
• future possibilities
• particular user interest (i.e. input; instance).
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State vs Environment

• Data from outside of knowledge base and given instance
 environment
• Example: new sensor data, changes in the world the system acts in, new tasks to be 

scheduled

• Data that never changes during search
 environment
• Example: cost-profit vectors

• Data describing internal beliefs, (partial) solutions, results of reasoning and 
everything not mentioned above
 state
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Transitions
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Transitions: General Comments (I)

In general, they connect two states:

• Directed relation: (s1,s2) means you can go from s1 to s2 (not vice versa)

• Based on rules from
• Application area
• Semantics of states
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Transitions: General Comments (II)

Big problem:
relation, i.e. there might be many states you can go to from a particular state
 the less the better

Use of more application knowledge in both states and rules for transitions can 
reduce number of potential successor states.

But: you can lose short search derivations and even correctness and completeness of 
algorithm

 less transitions vs better search control
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Processes
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Search Processes: General Comments

• Main tasks
• Selection of the next search state
• Integration of environment information

• Usually, many processes possible to a given search model
•  selection of search control essential for efficiency of search system

(will return to search controls but first talk about types of search)



49

Summary
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Summary

• Search is a process where after they finished you can identify steps that did not 
contribute to achieving the goals

• Intelligence Achieved by
• defining a good search model
• finding good controls for search processes

• There is always a worst case
• You need to define a Model and Process, you start these on an Instance which 

creates a Derivation (history of you search)
• Search spaces are often really really large (This is fundamental problem)
• Can use graphs and trees to manage search space exploration
• What problems do we have to solve when designing search solutions



Next…set-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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