
CPSC 433: Artificial Intelligence -
Assignment Project Description
(Version 1)

There will be one big team assignment, namely

1. developing (writing an abstract formal proposal) and
2. implementing (creating code for)

a search system for a given application area.

The application area will involve optimization of a constraint satisfaction problem
(CSP).

In the chosen CSP problem, different events/objects must be fit to available openings.
Valid solutions require the event/objects to fulfill hard constraints that limit where
they can be placed. Optimal solutions fulfill the hard constraints (true/false
requirements), while further placing events/objects in the best location to
maximize/minimize soft constraints (countable values) in the most preferred manner.

Team Size

We prefer teams of 5, but 6 can be approved. The project is completable by 3 students
but 4 is a good minimal size for workload in a semester. 5 allows for attrition through-
out semester without project becoming infeasible to complete. Groups that are too
small after midterm/proposal points of semester will be merged to complete the
coding implantation as a combined group. Teams can be cross-tutorial and formed by
students themselves. However, if you don’t have a team when I request groups to
inform we of their groups name, email addresses, and UCID, then we will assign
teams. Generally with a focus of teams within tutorials so that tutorials represent one
opportunity to communicate with you team members on planning during the semester.

Search Paradigms

As will become obvious during the course, for each application area there are different
search paradigms that can be used to develop a search system solving instances of the
problem. (Set-based, or-tree-based, and-tree-based are high level examples of these
with a number of sub-variants within them.) Each paradigm leaves a lot of room for
instantiations, based on the knowledge you have about the particular application area.

Assessments

The assignment is intended to make you aware of different paradigms and the
possibilities regarding their instantiations. Therefore,

1. You will write a paper to propose two abstract solutions to the application area
problem using two different search paradigms, then I will choose one of these
two for your group to implement in code.

(I generally select the paradigm that is best communicated and gives me the
most confidence your group can complete the code for a well functioning
solution.)

2. You will demonstrate the running of this system at the end of the semester to
me.

More precisely, in the proposal paper I expect each team to:

1. Present two different search models (using different data structures as states
and providing the necessary information how to instantiate these data
structures)

2. Describe them precisely (i.e. in a mathematical manner similar to what I use
in the lectures, concentrating on the necessary information for the
instantiation), and present at least one sensible search control for each model to
complete the definition of the search processes your search system might
employ.

3. Demonstrate what your search processes will do by applying them to a
small search instance chosen by you.

4. In addition to formal definitions, I also expect a natural language explanation
of the models, controls and processes and the reasons why you have chosen
the particular models.

Both paper and the final system will be assigned a letter grade based on its quality.

Optional Proposal Instructor Draft Meetings

Regarding the paper, it is a good idea to crosscheck with me your models, controls
and so on, before you submit the paper. In fact, I will be making myself available to
have a meeting with each team before the team submits the paper!

Non-functional Requirements

Your paper, again, can be produced by any text processor you want to use, but I
expect that you send me pdf-files that are readable everywhere. Note that using Word
can result in difficulties around formulas and sometimes fonts!

You can use whatever additional tools you want, and you can develop on whatever
machine you like, as long as the final system is written in language that can be
easily deployed to run on one of our Linux machines in the undergrad lab (resp.
one of our Linux compute servers), as a standalone application.

The most common choices are Python, and Java as all students will have taken a
course in these two. Naturally, both of these languages have some performance
challenges with being compiled interpreted languages. However, both are more than
capable of the scale needed for the problem given in this course if the search paradigm
is designed correctly. C++ is the most common third choice and does come with
performance benefits. Depending on your groups experience you may find debugging
C++ when they go wrong in your complex code more challenging to do than the prior
languages.

Each team will have to give a presentation of their system in the last week of classes
and the grade of a team for the system will be mainly based on how the system fares
during verification tests I bring with me to the lab during this
demonstration/presentation.

After the initial validation tests have been run once and pass/fail noted teams are
given the remainder of the demonstration time to fix any bugs they think they may
have. If these bugs are fixed and the systems pass the verification tests after the fixes
then credit my be given to the group. Note, these fixes must be general code chances
and not just attempts to hard code the desired test output.

I expect each team to fix all problems that the system shows in the demonstration
before the final submission of their code later. Not doing the fixes can result in a
worse grade.

	CPSC 433: Artificial Intelligence - Assignment Project Description

