
CPSC 383: Explorations in Artificial Intelligence and 
Machine Learning 
Assignment 2: Multi-Agent Systems, Planning, Re-Planning, 
Cooperation 

Weight: 15% 

Collaboration 

Discussing the assignment requirements with others is a reasonable thing to do, and an 
excellent way to learn. However, the work you hand-in must ultimately be your work. This is 
essential for you to benefit from the learning experience, and for the instructors and TAs to 
grade you fairly. Handing in work that is not your original work, but is represented as such, is 
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the 
university calendar. 

Here are some tips to avoid plagiarism in your programming assignments. 

1. Cite all sources of code that you hand-in that are not your original work. You can put the citation into 
comments in your program. For example, if you find and use code found on a web site, include a comment 
that says, for example: 

# the following code is from 
https://www.quackit.com/python/tutorial/python_hello_world.cfm. 

Use the complete URL so that the marker can check the source. 

2. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still 
get a low grade if you submit code that is not primarily developed by yourself. Cited material should never 
be used to complete core assignment specifications. You can and should verify and code you are concerned 
with your instructor/TA before submission. 

3. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your 
code that it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before 
writing your code. If you exchange code with another student, write code while discussing it with a fellow 
student, or copy code from another person’s screen, then this code is not yours. 

4. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing 
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes 
sharing code, discussing code itself, or modelling code after another student's algorithm. You can not use 
(even with citation) another student’s code. 

5. Making your code available, even passively (e.g. online repository accessible to other students), for others to 
copy, or potentially copy, is also plagiarism. 

6. We will be looking for plagiarism in all code submissions, possibly using automated software designed for the 
task. For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/). 

7. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor 
to get help than it is to plagiarize. The most common penalty is an F on a plagiarized assignment. 



8. For assignments limited use of generative AI in writing assistance is acceptable. For example, grammar 
suggestion, or code suggestion tools for programming. Programming or text that is largely generative AI 
produced is not allowed. Learners are ultimately accountable for the work they submit. Use of AI tools must 
be documented in an appendix for the assignment. The documentation should include what tool(s) were used, 
how they were used, and how the results from the AI were incorporated into the submitted work. Failure to 
cite the use of AI generated content in an assignment will be considered a breach of academic integrity and 
subject to Academic Misconduct procedures. 

Late Penalty 

For late individual assignments, those submitted within 24 hours of the initial deadline will 
receive 10% off, and within 48 hours will receive 20% off. After 48 hours, no late assignments 
will be accepted. -10% of 20 marks is -2 marks. -20% is -4. 

Goal 

Within the provided AEGIS system modify the provided Python agent code to allow the agent 
to work together with other agents to save SURVIVOR(s). Each simulation will begin with 7 
identical agents all started from your one codebase. These agents will have unique ID numbers 
given to them. We will be forming groups of 3-4 students for this assignment. You are free to 
use code from assignments 1 from any of your groups members submissions for path-finding. 
Assignment 2 does not need advanced path-finding to be completed successfully. The solution 
must be written by your group and not use existing libraries beyond those in aegis, or the base 
python installation.  

Technology 

AEGIS, Python 3.13 

Submission Instructions 

You must submit your assignment electronically using D2L. We only need one submission per 
group. Use the Assignment 2 GROUP dropbox in D2L for a final codebase electronic submission. 
In D2L, you can submit multiple times over the top of a previous submission. Do not wait until 
the last minute to attempt to submit. You are responsible if you attempt this, and time runs 
out. Your assignment must be completed in Python 3. 

Description 

What is AEGIS? (This is repeated from assignment 1) 

The Goobs have sent an elite space force to occupy AEGIS, the galaxy's central hub dedicated to 
saving lives across the galaxy. This futuristic space station floats in a serene nebula, and it's the 
last beacon of hope in the vast and dangerous expanse of space. Equipped with powerful 
scanners and teleportation gates, AEGIS connects distant worlds and provides a lifeline in the 



galaxy's most perilous regions. From here, they embark on their journeys, navigating the 
galaxy's dangers to rescue those in distress and tackle the most formidable dangers. 

AEGIS is a simulated agent disaster rescue scenario environment written in Python 3 with an 
optional Electron-based GUI. AEGIS consists of a simulation controller that manages all 
communication with agents, executes the simulation, and maintains the current state of the 
world. It updates the world as events happen. If the optional GUI is used, the GUI displays real-
time updates of the world’s state during the simulation. Additionally, the GUI allows users to 
create their own worlds. 

The API is primarily under https://aegis-game.github.io/docs/docs/api/, 

and getting started information under https://aegis-game.github.io/docs/docs/getting-
started/installation/ 

The AEGIS simulation is turn-based. For assignment 2 you will have SEVEN agents connect to 
the server. On connection agents are given a simplified rectangular grid view of the world which 
includes if a grid is safe to move on (KILLER grid locations are instant-‘death’, other grid types 
are safe to move on) However, grid locations do each have a MOVE_COST of energy. If an agent 
runs out of energy they also ‘die’ for remainder of simulation. GET_SURVS() can be used to find 
the LOCATION of the MULTIPLE SURVIVORS. It is your goal for your group of agents to save the 
SURVIVORS in the grid without running out of energy. In general, success will just be saving all 
of the survivors in a reasonable period of time (there will not be one minimal energy usage 
amount or round count necessary) 

A simulation consists of multiple rounds, with each round being a single time step in the 
simulated world. During each round each agent can pick one action to take. Agents have energy 
that is expended each time they use commands. If their energy expiries the agent becomes 
non-functional. 

What is new in AEGIS for Assignment 2? 

(You will need to use “aegis init --type mas”) 

The world is no longer limited to ONE SURVIVOR. There now may be more than one survivor. 
These survivors may also be buried under one or more RUBBLE. This RUBBLE requires agents to 
use a DIG command to remove it (sometimes it will require two agents to use DIG at the same 
time to remove it, but never more). There may be more than one survivor or rubble on a grid 
location in a sequence of layers. The top layer is revealed across the map to start. Lower layers 
are only revealed by being adjacent to a grid location (or by using a DRONE_SCAN). 

There are now CHARGING grids where an agent can stop and if they RECHARGE on their turn 
they will recover five energy. 

 

https://aegis-game.github.io/docs/docs/api/
https://aegis-game.github.io/docs/docs/getting-started/installation/
https://aegis-game.github.io/docs/docs/getting-started/installation/


The agents also have two new commands.  

1. They can SEND_MESSAGE for free on their turn (and still do one action command like 
DIG, MOVE, DRONE_SCAN, SAVE_SURV, RECHARGE). This allows agents to send strings 
of information to each other, that will arrive on the next round of their group members. 

2. Agents can call a DRONE_SCAN command which allows agents to view a grid location’s 
layers anywhere on the map. This can be useful determine if the rubble at a location 
requires two agents instead of one  

Your agent will know all move costs from the start (we’ll even hide the toggle from you so you 
don’t have to worry about it being switched the wrong way during the init command setup).  

For assignment 3 you should familiarize yourself with the full list of commands for agents in the 
documentation. 

A simulation will end when all survivors (could be more than one) have been saved using the 
SAVE_SURV command, all your agents expire from lack of energy of KILLER grids, or when a 
time limit passes. 

Assignment Challenge 

Your agents in AEGIS will begin on a grid location that does not contain the SURVIVOR. They 
could all appear at the same location, or at different locations. There will be 7 agents. There will 
be one or more survivors to be saved. 

It will be your job to move your agents each round until it is at the survivors’ locations and then 
use SAVE_SURV to end the simulation. However, there will be an array of challenges that will 
require you to consider your system as a multi-agent systems of cooperative agents who will 
need to plan and re-plan to solve problems. There are 5 categories of these challenges that will 
be tested (3 tests each): 

1. Decide you are by yourself to work by yourself or together to solve goal 
a. Remember there are 7 agents in map, but there may be no way for them to 

reach each other 
b. Some rubble needs more than one agent there to DIG at the same time to 

remove it  
2. Plan to use a charging grid to survive a movement path to a goal.  

a. You will need to assess the costs to reach the survivor and if it is too costly you 
will need to find and stop at a charging grid to recover 

b. Other 4 challenges you will have enough energy to complete without charging 
3. You may need to observe a location a distance away to see the stack of rubble and 

survivors to decide how many agents are needed 
a. Other 4 challenges the stack will either be one survivor or one rubble with one 

survivor underneath 



4. Decide how to split to solve a goal with multiple parts 
a. There may be multiple locations with survivors at them and with uncertainty in 

time, your group should split to save all 3 at the same time instead of one at a 
time 

b. This is the only round limited challenge as we won’t allow your agents to save all 
the survivors one at a time in a group 

5. Decide how to replan after solving a first goal (how to chain together goals) 
a. You maybe be able to save more than one survivor if you can re-plan to move on 

to other survivors after saving the first one 
b. Or you may need to dig up more than one survivor at a location 

You will not need assignment 1 degree of A* path-finding to do these. The maps will not be 
mazes, but you may find reasonable path-finding helpful, but again, not necessary. 

Evaluation 

At least one variant map for each of the five categories will be shared with the class. These will 
be a starting point for testing your system. Your group is expected to make their own testing 
maps as well. 

For grading we will have 3 maps for each of the five categories. Full credit will be given for 
saving the survivors in the maps. Some maps will have a limited time frame for full credit to 
prevent one agent from solving it all without grouping up. For example, scenario 4 where the 
group should split to save multiple survivors at the same time. 

For Fun (Bonus) 

Completely secondary from your assignment grading we will run your system on randomly 
generated maps with scattered, rubble, killer, charging, and survivor grid spots. We spawn 7 
agents from your code and within a time limit keep track of how many survivors you save (and 
how many rounds it takes) for points.  

We will examine the points achieved by different student groups and the top groups will be 
invited to show a couple of slides and tell the class what they incorporated into their design to 
achieve that performance. 

Reminder that this has no consequence (outside minor bonus) on your assignment 2 grading. 
This is for fun and is an opportunity for students to show off their unique ideas to the class. 

Additional Specification 

• Put your name, date, course, semester, and tutorial into the comments of the main.py of your 
modified agent_mas.  

• You must comment your code, provide citations for the source of algorithmic designs, and cite 
any GenAI code suggestion usage.  



• Do not rename or modify the provided common files.  
• You should not have any other .py files for assignment 2. 
• You should only use your A1 code for A* pathfinding.  
• Do not change provided code without discussion with instructor. If there is a bug, or something 

is broken, the instructor should be informed to fix this issue. 

Grading 
The total grade is out of 20.  
 
Five categories (out of 15) 
 3 maps for each  
Style/Commenting (out of 5) 

Name/Date/Course/Semester/Tutorial, don’t change files, etc. 
Bonus (1 bonus) 
 Top teams at for fun competition (a randomized map of survivors and rubble challenges) 

 
Submit the following using the Assignment 2 Dropbox in D2L 

1. main.py 
a. Just submit this one file for grading 


