CPSC 383: Explorations in Artificial Intelligence and
Machine Learning

Assignment 2: Multi-Agent Systems, Planning, Re-Planning,
Cooperation

Weight: 15%
Collaboration

Discussing the assignment requirements with others is a reasonable thing to do, and an
excellent way to learn. However, the work you hand-in must ultimately be your work. This is
essential for you to benefit from the learning experience, and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work, but is represented as such, is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the
university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1. Cite all sources of code that you hand-in that are not your original work. You can put the citation into
comments in your program. For example, if you find and use code found on a web site, include a comment
that says, for example:

the following code is from
https://www.quackit.com/python/tutorial/python hello world.cfm.

Use the complete URL so that the marker can check the source.

2. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code that is not primarily developed by yourself. Cited material should never
be used to complete core assignment specifications. You can and should verify and code you are concerned
with your instructor/TA before submission.

3. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code that it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before
writing your code. If you exchange code with another student, write code while discussing it with a fellow
student, or copy code from another person’s screen, then this code is not yours.

4. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

5. Making your code available, even passively (e.g. online repository accessible to other students), for others to
copy, or potentially copy, is also plagiarism.

6. We will be looking for plagiarism in all code submissions, possibly using automated software designed for the
task. For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).

7. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor
to get help than it is to plagiarize. The most common penalty is an F on a plagiarized assignment.

8. For assignments limited use of generative Al in writing assistance is acceptable. For example, grammar
suggestion, or code suggestion tools for programming. Programming or text that is largely generative Al
produced is not allowed. Learners are ultimately accountable for the work they submit. Use of Al tools must
be documented in an appendix for the assignment. The documentation should include what tool(s) were used,
how they were used, and how the results from the Al were incorporated into the submitted work. Failure to
cite the use of Al generated content in an assignment will be considered a breach of academic integrity and
subject to Academic Misconduct procedures.

Late Penalty

For late individual assignments, those submitted within 24 hours of the initial deadline will
receive 10% off, and within 48 hours will receive 20% off. After 48 hours, no late assignments
will be accepted. -10% of 20 marks is -2 marks. -20% is -4.

Goal

Within the provided AEGIS system modify the provided Python agent code to allow the agent
to work together with other agents to save SURVIVOR(s). Each simulation will begin with 7
identical agents all started from your one codebase. These agents will have unique ID numbers
given to them. We will be forming groups of 3-4 students for this assignment. You are free to
use code from assignments 1 from any of your groups members submissions for path-finding.
Assignment 2 does not need advanced path-finding to be completed successfully. The solution
must be written by your group and not use existing libraries beyond those in aegis, or the base
python installation.

Technology
AEGIS, Python 3.13
Submission Instructions

You must submit your assignment electronically using D2L. We only need one submission per
group. Use the Assignment 2 GROUP dropbox in D2L for a final codebase electronic submission.
In D2L, you can submit multiple times over the top of a previous submission. Do not wait until
the last minute to attempt to submit. You are responsible if you attempt this, and time runs
out. Your assignment must be completed in Python 3.

Description

What is AEGIS? (This is repeated from assignment 1)

The Goobs have sent an elite space force to occupy AEGIS, the galaxy's central hub dedicated to
saving lives across the galaxy. This futuristic space station floats in a serene nebula, and it's the
last beacon of hope in the vast and dangerous expanse of space. Equipped with powerful
scanners and teleportation gates, AEGIS connects distant worlds and provides a lifeline in the

galaxy's most perilous regions. From here, they embark on their journeys, navigating the
galaxy's dangers to rescue those in distress and tackle the most formidable dangers.

AEGIS is a simulated agent disaster rescue scenario environment written in Python 3 with an
optional Electron-based GUI. AEGIS consists of a simulation controller that manages all
communication with agents, executes the simulation, and maintains the current state of the
world. It updates the world as events happen. If the optional GUI is used, the GUI displays real-
time updates of the world’s state during the simulation. Additionally, the GUI allows users to
create their own worlds.

The API is primarily under https://aegis-game.github.io/docs/docs/api/,

and getting started information under https://aegis-game.github.io/docs/docs/getting-
started/installation/

The AEGIS simulation is turn-based. For assignment 2 you will have SEVEN agents connect to
the server. On connection agents are given a simplified rectangular grid view of the world which
includes if a grid is safe to move on (KILLER grid locations are instant-‘death’, other grid types
are safe to move on) However, grid locations do each have a MOVE_COST of energy. If an agent
runs out of energy they also ‘die’ for remainder of simulation. GET_SURVS() can be used to find
the LOCATION of the MULTIPLE SURVIVORS. It is your goal for your group of agents to save the
SURVIVORS in the grid without running out of energy. In general, success will just be saving all
of the survivors in a reasonable period of time (there will not be one minimal energy usage
amount or round count necessary)

A simulation consists of multiple rounds, with each round being a single time step in the
simulated world. During each round each agent can pick one action to take. Agents have energy
that is expended each time they use commands. If their energy expiries the agent becomes
non-functional.

What is new in AEGIS for Assignment 2?

(You will need to use “aegis init --type mas”)

The world is no longer limited to ONE SURVIVOR. There now may be more than one survivor.
These survivors may also be buried under one or more RUBBLE. This RUBBLE requires agents to
use a DIG command to remove it (sometimes it will require two agents to use DIG at the same
time to remove it, but never more). There may be more than one survivor or rubble on a grid
location in a sequence of layers. The top layer is revealed across the map to start. Lower layers
are only revealed by being adjacent to a grid location (or by using a DRONE_SCAN).

There are now CHARGING grids where an agent can stop and if they RECHARGE on their turn
they will recover five energy.

https://aegis-game.github.io/docs/docs/api/
https://aegis-game.github.io/docs/docs/getting-started/installation/
https://aegis-game.github.io/docs/docs/getting-started/installation/

The agents also have two new commands.

1. They can SEND_MESSAGE for free on their turn (and still do one action command like
DIG, MOVE, DRONE_SCAN, SAVE_SURV, RECHARGE). This allows agents to send strings
of information to each other, that will arrive on the next round of their group members.

2. Agents can call a DRONE_SCAN command which allows agents to view a grid location’s
layers anywhere on the map. This can be useful determine if the rubble at a location
requires two agents instead of one

Your agent will know all move costs from the start (we’ll even hide the toggle from you so you
don’t have to worry about it being switched the wrong way during the init command setup).

For assignment 3 you should familiarize yourself with the full list of commands for agents in the
documentation.

A simulation will end when all survivors (could be more than one) have been saved using the
SAVE_SURV command, all your agents expire from lack of energy of KILLER grids, or when a
time limit passes.

Assignment Challenge

Your agents in AEGIS will begin on a grid location that does not contain the SURVIVOR. They
could all appear at the same location, or at different locations. There will be 7 agents. There will
be one or more survivors to be saved.

It will be your job to move your agents each round until it is at the survivors’ locations and then
use SAVE_SURYV to end the simulation. However, there will be an array of challenges that will
require you to consider your system as a multi-agent systems of cooperative agents who will
need to plan and re-plan to solve problems. There are 5 categories of these challenges that will
be tested (3 tests each):

1. Decide you are by yourself to work by yourself or together to solve goal
a. Remember there are 7 agents in map, but there may be no way for them to
reach each other
b. Some rubble needs more than one agent there to DIG at the same time to
remove it
2. Plan to use a charging grid to survive a movement path to a goal.
a. You will need to assess the costs to reach the survivor and if it is too costly you
will need to find and stop at a charging grid to recover
b. Other 4 challenges you will have enough energy to complete without charging
3. You may need to observe a location a distance away to see the stack of rubble and
survivors to decide how many agents are needed
a. Other 4 challenges the stack will either be one survivor or one rubble with one
survivor underneath

4. Decide how to split to solve a goal with multiple parts
a. There may be multiple locations with survivors at them and with uncertainty in
time, your group should split to save all 3 at the same time instead of one at a
time
b. This is the only round limited challenge as we won’t allow your agents to save all
the survivors one at a time in a group
5. Decide how to replan after solving a first goal (how to chain together goals)
a. You maybe be able to save more than one survivor if you can re-plan to move on
to other survivors after saving the first one
b. Or you may need to dig up more than one survivor at a location

You will not need assignment 1 degree of A* path-finding to do these. The maps will not be
mazes, but you may find reasonable path-finding helpful, but again, not necessary.

Evaluation

At least one variant map for each of the five categories will be shared with the class. These will
be a starting point for testing your system. Your group is expected to make their own testing
maps as well.

For grading we will have 3 maps for each of the five categories. Full credit will be given for
saving the survivors in the maps. Some maps will have a limited time frame for full credit to
prevent one agent from solving it all without grouping up. For example, scenario 4 where the
group should split to save multiple survivors at the same time.

For Fun (Bonus)

Completely secondary from your assignment grading we will run your system on randomly
generated maps with scattered, rubble, killer, charging, and survivor grid spots. We spawn 7
agents from your code and within a time limit keep track of how many survivors you save (and
how many rounds it takes) for points.

We will examine the points achieved by different student groups and the top groups will be
invited to show a couple of slides and tell the class what they incorporated into their design to
achieve that performance.

Reminder that this has no consequence (outside minor bonus) on your assighnment 2 grading.
This is for fun and is an opportunity for students to show off their unique ideas to the class.

Additional Specification

e Put your name, date, course, semester, and tutorial into the comments of the main.py of your
modified agent_mas.

¢ You must comment your code, provide citations for the source of algorithmic designs, and cite
any GenAl code suggestion usage.

e Do not rename or modify the provided common files.

e You should not have any other .py files for assignment 2.

e You should only use your Al code for A* pathfinding.

e Do not change provided code without discussion with instructor. If there is a bug, or something
is broken, the instructor should be informed to fix this issue.

Grading

The total grade is out of 20.

Five categories (out of 15)
3 maps for each
Style/Commenting (out of 5)
Name/Date/Course/Semester/Tutorial, don’t change files, etc.
Bonus (1 bonus)
Top teams at for fun competition (a randomized map of survivors and rubble challenges)

Submit the following using the Assighnment 2 Dropbox in D2L

1. main.py
a. Just submit this one file for grading

