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Basics

So far, we have designed and discussed a fully connected feed-forward
network.

It is fully connected, as every neuron in the kt" layer is connected to
every neuron in the (k + 1)t" layer.
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ImageNet

ImageNet is a database of labelled images, based on the WordNet
taxonomy of concepts.

* https://image-net.org/index.php

It currently contains over 14,000,000 human-labeled images.

https://arstechnica.com/ai/2024/11/how-a-stubborn-computer-
scientist-accidentally-launched-the-deep-learning-boom/
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By Christoph Leeb, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4347533
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ImageNet competition

The ImageNet dataset was the basis for
the ILSVRC, an annual Al competition
that ran from 2010-2016.

In 2012, a neural net calls AlexNet
created by researchers at the University
of Toronto won by a large margin.

Combined CUDA on graphics cards,
Convolution in deep networks, and data
augmentation
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Top-5 error on this competition (2012 when things
changed)

TASK 1 - CLASSIFICATICN

CNN SIFT+FV SVM1  SVM2  NCM

I

conv. neural network  symbolic
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AlexNet and Convolution
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Idea

Usually if we know something about our problem, it is a good idea to
build that into our network design.

* e.g. encoding data, or taking advantage of invariant properties

Convolution is a good example of this.
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Model of vision in animals

& [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps
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Consider learning an image:

* Some patterns are much smaller than the whole image
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Detectors

e Same pattern appears in different places:
They can be compressed!
What about training a lot of such “small” detectors
and each detector must “move around”.

They can be compressed
to the same parameters.
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A convolutional layer

* A CNN is a neural network with some convolutional layers (and some other
layers). A convolutional layer has a number of filters that does convolutional
operation.

g F F F FF S E

Inputs Outputs

LN UNIVERSITY OF

% CALGARY

16



17

What is happening?

Deep Meural Network
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object models

https://www.saagie.com/fr/blog/object-detection-partl
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How do we convolve an image with an ANN?

input neurons

: — 220000000000 first hidden layer
00RO ——0 0 0 000 0000 0000000000000
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How do we do many convolutions of an image with an ANN?

28 x 28 input neurons

first hidden layer: 3 x 24 x 24 neurons

—
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AlexNet

AlexNet is a convolutional neural network (CNN),
consisting of the following layers:

* Fully connected (FC) layers
e Convolutional layers (Conv)
* Max pooling layers (MaxPool)

FC (1000)

t

FC (4096)

t

FC (4096)

{

3 x 3 MaxPool, stride 2

t

3 x 3 Conv (256), pad 1

3 x 3 Conv (384), pad 1

f
(
f
(

3 x 3 Conv (384), pad 1

t

3 x 3 MaxPool, stride 2

t

5 x5 Conv (256), pad 2

t

3 x 3 MaxPool, stride 2

t

11 x 11 Conv (96), stride 4

t

Image (3 x 224 x 224)
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By Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J. - https://github.com/d2l-ai/d2I-en, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=152265712
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Depth

* As processors have become more powerful, neural nets have been able to get
deeper and deeper:

28.2

‘ 152 layers

A
\
\
‘ 22 layers H 19 Iayers ‘
\ 6.7 I

3 57 I I 8 layers 8 layers

ILSVRC'15  ILSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

UNIVERSITY OF
Jiang, Zichao. (2019). A Novel Crop Weed Recognition Method Based on Transfer Learning from @1@AL@AR&G by
Keras. IOP Conference Series: Materials Science and Engineering. 677. 032073. 10.1088/1757-899X/677/3/032073.
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Example

So far, we can identify 28x28 images of digits by flattening and inputting

the image by pixels.

What if we want to read a longer number that is less cleanly processed?
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Idea

One way we could imagine doing this is by applying a neuron to an

image using a shifting window.

* When the image lines up with something the neuron recognizes, this will be
reflected in the outputs

/
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Convolution

Convolution is the process of taking a neuron called a filter or kernel
and measuring its output at regular locations in the original input.

* The distance the location shifts each step is called the stride.
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Convolution

For each location of the frame, the set of neurons gives an output value.
* Then you can use these values as inputs to the next layer
» Often repeated for many different filters (https://convviz.netlify.app/)
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https://convviz.netlify.app/

Example

What is the output of convolving the following input array with the
given filter, assuming a stride of 1 and a bias of 0?

Input: 0c/1/1/{0/1/]0[0,0]1

Filter: -1 1 -1
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Example

What is the output of convolving the following input array with the
given filter, assuming a stride of 2 and a bias of 0?

Input: 0c/1/1/{0/1/]0[0,0]1

Filter: 1(-1-1
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Example

What is the output of convolving the following input array with the
given filter, assuming a stride of 1 and a bias of 0?

Input: o(1/1, 0, 1/1/0 /1
c/1/1/0/0]01]|1

Filter: -1 1
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Pooling
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Why Pooling

* Subsampling pixels will not change the object

bird
bird

We can subsample the pixels to make image smaller

‘ fewer parameters to characterize the image
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Pooling

Convolved
feature

Pooled
feature
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Convolution

* Max pooling is the process of taking the maximum value in a shifting window,
usually with stride > 1.

* Helps to reduce image size while maintaining information about what  was
found in the convolutional step
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AlexNet (revisited)
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Filters

* We can take the trained filters from the first convolutional layer and see what
input patterns caused them to activate the most:
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Dropout
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Other ideas

AlexNet has 60 million parameters in total and 1000 classes of images
from ILSVRC to train on.

* Only about 1000 examples of each class

This makes it challenging to avoid overfitting.
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Dropout

In dropout, for each training sample, certain hidden neurons will have
their inputs set to 0 with probability p.

tf.keras.layers.Dropout (0.2)
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Dropout

Dropout helps to prevent over-reliance on individual neurons.
* Also helps avoid getting stuck in local optima

However, this increases the training time, since not all weights/biases
are updated every step.
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Data augmentation
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Data augmentation

AlexNet also uses data augmentation to increase the amount of
training data it has available to learn from.
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Data augmentation

The original images in ImageNet were 256 x 256 pixels, but AlexNet
operated on images with 224 x 224 pixels.

These new images were obtained from the originals by randomly
cropping the borders and/or flipping the original image.

* This increased the training set size by a factor of 32 x 32 x 2 = 2048

They also randomly adjusted the colour intensity each time a sample
was used for training.
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Exploration
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Similarity test

One way we can look at the performance of a neural net is to see which
training images produce outputs that are “close” to the output on a
particular image.

This gives us some insight into what types of patterns the neural net is
learning.

https://convnetplayground.fastforwardlabs.com/#/
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Note

These neural nets can “see”, but not in the same way we do.

For example, humans are able to learn based on very few examples,

while neural nets need hundreds or thousands for each image class.

* Difference is understanding of context and the real world
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Adversarial
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Adversarial examples

Neural nets behave reasonably well on inputs that resemble the
training data.

However, they don’t perform well in an adversarial setting.
* i.e. we can easily design inputs for which things go horribly wrong

This happens even for the “good” neural networks, and is based on
exploiting how they work.
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Creating images

One way in which we can generate images that fool a network is with a
constructive approach.

* e.g. genetic algorithms, gradient ascent, or GANs

We start with an image of random noise and keep adjusting it in ways
that improve the network’s confidence that it is a certain target class.
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A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 427-436
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A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 427-436
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Creating images

We can also start with images the neural net does recognize and alter
them in ways that “tricks” the net into thinking it is a different image.

Part of the reason this works is that the model seems to care about
certain pixels more than others, so by adjusting those particular pixels
we can cause it to change its label.
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A. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, "Humans can decipher adversarial images," in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 160-169.
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A. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, "Humans can decipher adversarial images," in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 160-169.



Adding noise

A fast gradient sighed method (FGSM) attack is based on altering pixels
of an image in a way that maximizes its loss on a trained model.

* https://www.tensorflow.org/tutorials/generative/adversarial fesm
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Zhang, Weijia. (2019). Generating Adversarial Examples in One Shot With Image-to-Image Translation GAN. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2946461.
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Summary

Convolutional neural networks are amazing at solving certain types of
problems.

However, they don’t see things the way we do, and they can still be
tricked by exploiting how they work.

Finding these adversarial images also helps us improve neural
networks, which is why they are important to look for.
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Next...auto-encoders

Jonathan Hudson, Ph.D. mzm UNIVERSITY OF

jwhudson@ucalgary.ca W CALGARY

https://cspages.ucalgary.ca/~jwhudson/



	Convolutional Neural Networks
	Basics
	ImageNet
	ImageNet
	Slide Number 5
	Slide Number 6
	Slide Number 7
	ImageNet competition
	Top-5 error on this competition (2012 when things changed)
	Slide Number 10
	AlexNet and Convolution
	Idea
	Model of vision in animals
	Consider learning an image:
	Detectors
	A convolutional layer
	What is happening?
	How do we convolve an image with an ANN?
	How do we do many convolutions of an image with an ANN?
	AlexNet
	Depth
	Convolution
	Example
	Idea
	Convolution
	Convolution
	Example
	Example
	Example
	Pooling
	Why Pooling
	Pooling
	Convolution
	AlexNet (revisited)
	Filters
	Dropout
	Other ideas
	Dropout
	Dropout
	Data augmentation
	Data augmentation
	Data augmentation
	Exploration 
	Similarity test
	Slide Number 45
	Note
	Adversarial
	Adversarial examples
	Slide Number 49
	Slide Number 50
	Creating images
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Creating images
	Slide Number 57
	Slide Number 58
	Adding noise
	Not an Ostrich
	Summary
	Next…auto-encoders

