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Review

Training a neural net is is the process of adjusting to minimize
across all of the data.
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Definition

Optimization is a set of problems that involve selecting the “best”
element from some set of values.

e Usually values maximizing or minimizing some objective function

Optimization problems can be discrete or continuous.
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Example

* Suppose you wanted to find the “best” value of x, i.e. the one that minimizes

the cost function f(x) = x* —x% + 17x + 3 shown below.
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Optimization

In general, optimization problems are intractable, i.e. an exact solution
is either computationally expensive or impossible to obtain.

However, in practice we are usually happy with a “good enough”
solution that is easier to find.
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Optimization

ldea: what if you just want to find something better than what you

currently have?

f(x) =x% —x4+17x+3
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Optimization

ldea: what if you just want to find something better than what you

currently have?
fery=x* —x*+17x +3

f(x) =4x3 — 2x + 17
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Optimization

ldea: what if you just want to find something better than what you

currently have?
fery=x* —x*+17x +3

f(x) =4x3 — 2x + 17
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Optimization

ldea: what if you just want to find something better than what you

currently have?
fery=x* —x*+17x +3

f(x) =4x3 — 2x + 17
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Learning rate

The step size in this approach is called the learning rate, 7.
x =x —1 *sign(f (x)) to minimize

x =x+n *sign(f (x)) to maximize
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requires many updates rate swiftly reaches the
before reaching the minimum point
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Too large of a learning rate
causes drastic updates

which lead to divergent
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Gradients
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Gradient

The derivative at a point in k dimensions is called the gradient, which is
a vector that points in the direction of steepest ascent.

dy dy 0Oy
0x1 , axz ’ a_xk)

f,(le X2 xk) — (
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Definition

Gradient descent is an iterative algorithm for minimizing a
differentiable multivariable function.

1. Pick a random starting point

2. Tryto find the minimum value by taking a step of size n7 in the
direction of the gradient

3. Repeat step 2 until you run out of steps

3l UNIVERSITY OF

¥ CALGARY



17

Gradient descent

Gradient descent is very sensitive to both your random starting point
and the shape (topography) of the space you are exploring.

.....e. it doesn’t always work well.
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Note

Taking small steps against the gradient to try and find the global
minimum is an example of following a heuristic.

And as we saw, there are always bad cases where any heuristic makes
things worse, or cases where it is simply not helpful.
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Activation Functions
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Activation functions

One big problem with our current activation function is that it is not
continuous (and the derivative is either flat or DNE).

* This does not work well for our optimization!
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Activation functions

To handle this, we have some alternative activation functions:

* Rectified linear unit (ReLU): f(z) = CPBZ otfllij\;sg
* Sigmoid (logistic) function: f(z) = N +1e_Z
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. Derivative of g, Order of
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(ReLU) = max(0,z) = 1,59

https://en.wikipedia.org/wiki/Activation function
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Activation functions

A good activation function needs to be:

Non-linear
Easy to compute
Continuous and differentiable (almost everywhere)

Numerically stable, especially when combined with your loss function
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Altogether
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Neural nets

The goal of training is to find wq, wy, ...w,, by, by, ... b,,, that minimize:

1
T(Wll W2, ... Wn, bl) bZi bm) — ;G?;O L(gi; ai);

where g; is the guess output by our neural net for sample i.
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Neural nets

The true objective function T (w1, wy, ... wy, by, by, ... b, ) depends
simultaneously on all of the training samples.

* This is a lot of information/computation to factor in all at once
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Neural nets

Instead, we usually prefer to improve L(g;, a;) for a single random

sample (x;, y;) at a time.

This approach is called stochastic gradient descent
* Can prove this is almost as good as the original
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Epochs

In practice, we usually shuffle the training data and then iterate
through the samples, improving the loss on each one in turn.

* Seems to be just as good as picking randomly each time

A single pass through the training data of this type is called an epoch.
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Next...convolutional neural
networks
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