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Vectors (review)

A vector in n dimensions is a tuple of n values, X = (x1, X2, X3, ... X,).
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Data encoding

In machine learning, we like to work with vectors.

To do this, we need to find ways to encode whatever data we have into
vectors in n-dimensional space.

* Applies to both values and labels

* We may also need to translate the output back into “natural” format
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Data encoding

Why do we like vectors?

* Numeric representation of data
e Abstracts away unnecessary details
e Consistency across different domains
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Data encoding

It is important to find a good representation of your data that works

well for the types of patterns you are looking for.

* |deally we want “similar” data points to have similar encodings
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Feature Vectors

""""""""""""""

7 CALGARY



Feature vectors

A single input value x might consist of many features representing a
particular data point.

Our first task is to convert x into a feature vector that can be input to
our ML algorithm.

* We will do this by encoding each feature separately and then
concatenating
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Feature vectors

For our purposes, a feature vector will be a vector of size n.

A dataset with m values can then be represented as a m X n array.
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Discrete features

* For a discrete feature that can take on one of k possible values, there are a
couple approaches to encoding.
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Discrete features

One-hot code is best when there is no extra structure to the values,
and they just represent choosing one of k distinct options.
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Discrete features

Thermometer code is good for where the ordering conveys some
information, but there aren’t natural numeric values.
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Exercise

* Suppose you were asked to encode a label from the set {cat, dog, horse, frog}in
one-hot encoding. What would the encoding of each label look like?
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Discrete features

Numeric values [1]...[k] should only be used where the values signify
some inherently numeric quantity.

These would likely be subject to further numerical processing.
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Normalization
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Exercise
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KNN without scaling KNN with scaling
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Numeric features

For numeric values, best practice is usually to convert the values into
their z-scores.

* This is called standardizing the values
* 1 is the mean (average) and o is the standard deviation
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Exercise

Suppose you have the following set of values in your dataset measuring
the weight of different loaves of bread:

12.3, 11.5, 13.2, 11.8, 12.2

What are their values when converted to z-scores (i.e. standardized)?
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Numeric features

If z-scores don’t make sense, it is often still a good idea to rescale the
values so they liein (-1, 1) or (O, 1).

e e.g. if values are uniformly distributed
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Question

Are Boolean values (0 or 1) discrete or numeric?
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Compound Features
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Compound features

If a feature can be split into two component features, it is often better
to encode each of the smaller features separately.

* Benefits from a space and a training perspective
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Exercise

Suppose you are encoding the model and year of a car as a feature
vector. There are three possible models and ten possible years.

What is the dimension of your resulting vector if you encode them as a
pair? What if you encode them separately?
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Multi-dimensional Data
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Example

In the MNIST dataset, images are 28 x 28 pixels, and each pixel is a
grayscale value from 0-255.

How can we convert this into a vector?
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Example

In the MNIST dataset, images are 28 x 28 pixels, and each pixel is a

grayscale value from 0-255.

* One way to get a feature vector is to simply flatten the image

e Remember to rescale!
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Example

How could you encode someone’s blood type as a feature vector?

Group A Group B Group AB Group O
Red blood
cell type
() v N/

\ QL AL N
Antibodies | 75, C g = -~
1 N— N /AN N\—
in plasma 3 A0 A AN

Anti-B Anti-A None Anti-A and Anti-B
Antigens in
red blood ?. ? e
cell A antigen B antigen Aand B None

antigens
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Labelling
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Outputs

So far, our neural nets are restricted to simple single-neuron outputs.

This works well for regression and binary classification, but what if you
want to output one of 10 possible labels, for example?
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Classification

If there are 10 possible labels, you would want 10 neurons in the
output layer.
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Classification

In reality, the output will be a vector of 10 decimal values called logits.

e But these aren’t probabilities!
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Classification

The raw outputs of the neural net can be interpreted as the relative
certainties of the labels.

To convert this to a vector of probabilities, we use the softmax function:

ezi
O-(Zi) = N
j=1

esj
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Classification

The raw outputs of the neural net can be interpreted as the relative
certainties of the labels.

To convert this to a vector of probabilities, we use the softmax function:

esi
O-(Zi) — ;:lzl er
Outputs from normalizing: [0.05, 0.80, 0.01, 0.14]
Outputs from softmax: [0.15, 0.54, 0.14, 0.17] = sy o
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Labels

We also need to represent our labels in a way we can work with them!
* Need to be comparable to the output of our model

For classification problems, labels will be from a set of k discrete values.
These can be encoded using either a numeric or a one-hot encoding.

For regression problems, the output of the model is usually taken
directly as a numeric value.
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Labels

Tensorflow will support either one-hot or numeric labels, but you need
to indicate which one you are using.

* MINIST labels are stored as numbers 0-9

The keyword “sparse” means you want Tensorflow to convert your
labels to one-hot vectors for you.
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Loss Functions and Labelling
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Loss functions

Tensorflow has different loss functions depending on how you are

capturing the output of your neural net and how you are encoding your
labels:

e Categorical Cross-Entropy
» Sparse Categorical Cross-Entropy

* Binary Cross-Entropy (note: no softmax!)
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Loss functions

For numerical stability reasons, we often don’t build softmax into our
neural net.

Instead, we leave the outputs as raw logits and tell our loss function to
take this into account:

tf.keras.losses.SparseCategoricalCrossentropy (from logits = True)
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Curse of dimensionality

One issue when encoding features as vectors, especially using one-hot,
is that the resulting vector space is both very large and very sparse.

* This makes it harder for algorithms to learn meaningful patterns

Dimensionality reduction is one way of combatting this.

* Goal is to reduce the number of dimensions while still retaining
representative information
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Example (revisited)
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Next...stochastic gradient
descent
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