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Neurons

The basic unit of connectionist Al is the neuron.

It is designed to be a digital approximation of the neurons in our brains.
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What are neural networks?

* Supervised machine learning technique (train to memorize model for X->Y dataset

Inspired by the Human Brain.

The human brain has about 86 Billion neurons and requires 20% of your body’s
energy to function.
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Neural Model
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Neuron Model of Connections

* Developed to mimic the human
neural system (in the brain) and
its processing capabilities

* Decentralized knowledge
representation and processing
“ hopefully very efficient

* Simple components, the
intelligence is in the connections
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Single neuron

In this representation, a neuron consists of the following:
* Input values x1, xp, X3, ... X,,
* Weights w{, wy, ws, ...wy,

 Abiasb
e An activation function, which in this case is
|1 ifz=0
f(z) = {O otherwise
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Exercise — What is output?
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Exercise2 — What is output?
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Exercise

» Suppose you are trying to train a ML model that can tell the difference between a
giraffe and a horse based on height and weight.

* Can you design a single neuron that will label an animal as a giraffe if it has a
height greater than 2?
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Neuron Model Class
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Model class

Suppose we are working with a single neuron.
* This is a model class for binary classification

What are the model parameters, and what types of patterns in data
can we capture?
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Model class

Suppose we are working with a single neuron.
* This is a model class for binary classification

What are the model parameters, and what types of patterns in data
can we capture?

Wi, Wy, W3, ..., b

Patterns are hyperplanes -> 2D
y=mx+b
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Model class

2D line example

X1W1+x2W2_b20
xwi; +yw, —b =0

YW- = —XW1q + b

W1 1
W»- W
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Exercise

Draw a neuron that models the following linear classifier, given by the
equationy = %x +1
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Exercise

f(2)

y=z-x+1

2y =2 x + 2

2y —x—2=20
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Example

Consider the following two datasets. Can they be classified correctly by
a single neuron?
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TensorFlow

To build neural nets, we will be using the TensorFlow library for Python 3:
* https://www.tensorflow.org/guide/basics

Keras is the high-level APl for TensorFlow, and is automatically included
with the installation:

e https://www.tensorflow.org/guide/keras

Make sure you are using TensorFlow 2 for your work in this course.
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TensorBoard

TensorBoard is a visualization toolkit for TensorFlow:

* https://www.tensorflow.org/tensorboard

* It has way more features than we will be looking at in this course!

You will be using it a bit on your assignment to compare different
models that you create for a dataset.

* Visualization will be hosted by default on port 6006
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Neurons

* A neural network is a model class made up by connecting multiple neurons. This
network is then trained to give a model that can be used to make predictions.
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Question

* What do ogres and neural nets have in common?
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Neural nets

A neural network is typically made by connecting neurons in layers:

* Input layers simply pass in the input features
* Output layers contain the neurons that output the result

* Hidden layers are any additional layers of neurons between the input
and output

A deep neural network contains two or more hidden layers.
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Neural nets

input layer

hidden layer 1 hidden layer 2
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Neural nets

When connecting the neurons in layer k to the neurons in layer k + 1,

we pass the output of every neuron in layer k as an input to every
neuron in layer k + 1.

If we have four neurons in layer 3 and six neurons in layer 4, how many
weights are there in the 4th layer in total?
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Example

Consider the neural net on the following slide.

How many layers are there, and how many neurons in each layer?

What is the output of the neural net on the input (1,2)?

e Assume step function activations for now
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Question

How does changing the number of neurons and width/depth of the net
change the model class we are capturing?
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Exercise

Consider the following neur

on:

f(2)
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Neuron logic

The neuron on the previous slide computes the binary AND function!
* You can also similarly create neurons for OR, NOT, and the identity function

This gives us a nice interpretation for what the hidden layers are doing.
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Example

For the XOR dataset, one neural net that can classify it would be:
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Simulation

https://playground.tensorflow.org/
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Exercise

How many neurons would we need to model the following function?

* Linesarey =>2x —landy < —x+3

UNIVERSITY OF

CALGARY



Deep Neural Nets

“i» UNIVERSITY OF
CALGARY



Deep neural nets

Each layer added to the neural net allows the model to capture more

complex functions.

* Width also helps, but in a different way
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Deep neural nets

Increasing the number of neurons in a layer can also help to reduce the
chance of getting stuck at local minima

 Effectively turns minima into saddle points
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Deep neural nets

Having more layers in a neural net increases the risk of overfitting.

There is also a significant cost associated with adding layers to the net
* Even commercial nets are usually only a dozen layers deep
* Width is much less expensive than depth
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Deep neural nets

As part of the training process, we need to determine how adjusting
each weight affects the net’s output:
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Deep neural nets

As part of the training process, we need to see how adjusting each
weight affects the net’s output:
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Deep neural nets

The amount of time needed to compute each partial derivative looks
like it should be exponential in the depth of the net.

Instead, it is possible to reuse most of the computation using an
algorithm called backpropagation.

 Based on the chain rule from calculus

But adding depth still has other problems!
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A short history of Neural Networks

* 1957: Perceptron (Frank Rosenblatt): one layer network neural network
* First Al Winter (General problem solvers)

» 1988: Backpropagation (faster training)

* 1989: ALVINN: autonomous driving car

* 1989: (LeCun) Handwritten ZIP codes on mail

* Second Al Winter (Expert systems)

* 2012: Convolutional neural networks (vision)

* 2010: Deep learning

e 2017: Transformers (Like Chat-GPT)

e 2020s: LLM and Generative Al enabling

* (near-human capabilities for image recognition, speech recognition, and language translatigs
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Next...data processing
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