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Categories

In reinforcement learning, the goal is to learn a mapping of inputs to
outputs that maximizes the earned “reward”.

1. Observe state
2. Select action
3. Receive a reward based on state and action
4. Transition probabilistically to a new state based on previous state 

and action
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Example

As a student, you are an example of reinforcement learning!

So are:
• Generative AI models like GPT and DALL-E
• Many AI models that play games (Starcraft, GO, etc.)
• Robotics
• … and many more
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Multi-armed Bandit



5

Armed Bandits

• Slot machines -> one-armed bandits
• The arm you pull to spin the wheel is 

the one-arm
• The bandit being that they are 

‘rigged’ so that the house always 
wins more than the user population 
in the long-tern

• Multi-armed bandit means multiple 
slot machines

• Multi-armed Bandit Problem is trying 
to figure out (while just playing) the 
slot machines which has the best 
odds
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Multi-armed Bandit Problem

• This natural a problem with a 
structure made for re-inforcement 
learning

• You have an original plan that you 
use to choose which slot machine to 
play first

• The data you gain from that is used 
to adjust your plan for the next time 
you pick a slot machine to play
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Important Assumptions

• Fundamental part of problem is 
requirement that a choice of an arm 
does not affect any slot machines 
payoff odds

• This is not true to the real-world 
where many slot machines like to 
show users a building payoff amount 
and promise better odds over time to 
overcome risk aversion

• Restless Bandit Problem allows for 
the odds of a played machine to 
change (using Markov state evolution 
of probabilities)
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Exploitation vs Exploration

• Popular intro to reinforcement 
learning as it’s a great example of

• Exploration vs exploitation trade-off 
• Should a play a new machine that I want 

more knowledge about
• Or should I play the one I currently think 

has the best odds

• Most version you begin with no 
knowledge of machine odds

• Goal is to pick one machine at some 
point

• All that is known is each machine has 
its own payoff probability distribution
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Usages
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Non gambling scenarios

• Often when making design choices in 
ads, websites, content, companies use 
A/B testing where users are served 
variants of content, then 
response/engagement/etc. rates are 
reviewed and one of the variants 
chosen

• Youtube lets you do this with 
thumbnails for videos

• Bandit selection is a service offered by 
advertising companies, and they have 
us code up back-ends so that non-
tech users can use it
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Non gambling scenarios

• Bandit selection allows you to deploy 
many choices as well, but over-time 
as users engage the most successful 
design will be served most often

• The benefit of this, is when you are 
running an ad campaign you have 
limited time to make money

• You make most of it right away some 
times as you can only buy ad space in 
prominent places for short time

• Bandit selection allows you to start 
profiting earlier on your best design
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Non gambling scenarios

• You run a research or pharma. 
company with many projects

• Each project has odds of being successful 
that you don’t fully know

• Should you continue to fund currently 
running projects

• Or start other projects that are proposed 
with less known about them

• Often these variants include how 
much money should be invested in 
each, instead of just one usage like 
the slot machine scenario
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Non gambling scenarios

• Network routing
• Pick which next hop to propagate data through 

without perfect knowledge of which edges are 
fastest, or robust to data loss

• Game designing
• Positively: Game testing different design choices
• Negatively: Making exploitative game that tries to get 

you to pay more based on your personality type
• Addictive behaviour exploitation

• Live!
• Like hosts at casinos or online gambling apps that 

identify you and exploit you to gamble more because 
you are a ‘big loser’
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Solutions
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Best Arm Identification

• Pick one arm of the k you start with
• Two main solution types
• Optimal solutions

• You can ‘do the math’ and essentially define how long it would take to use a slot machine 
to determine its distribution (its mean payoff rate) with certain confidence you require

• You can then ‘do the math’ with two machines to decide to choose the one with the most 
uncertain mean each time, and then at a certain point you can decide you are confident 
enough your sample means for each are different and pick the higher one

• This can be extrapolated for 3, 4, etc. machines

• Approximate solutions
• Optimal solutions are both limiting in requiring determinate time which may be excessive
• That time may be unnecessary as you are interested in something that is ‘good enough’

• Sometimes its easier to collect many data points before changing a strategy (serving webpages)
• Sometimes you don’t need optimal answer, just actionable one that isn’t bad
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Best Arm Identification

• Approximate solutions
• Semi-uniform Strategies

• Use a numerical controls, often 𝜖𝜖 epsilon
• Epsilon-greedy

• Select best lever for 1 − 𝜖𝜖 % of trials, and random otherwise, like 90% exploit, 10% explore
• Epsilon-first

• Phases, for N trials, then explore 𝑁𝑁𝑁𝑁 in a row, then exploit (1 − 𝑁𝑁)𝜖𝜖 pulling best lever after
• Epsilon-decreasing

• Start with high exploration (high epsilon) and decay it overtime to exploit
• Other adaptive methods

• Semi-uniform requires picking one or more ‘magic numbers’
• Epsilon, N, decay rates
• Heuristics an average user may not understand
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Best Arm Identification

• Other approximate solutions
• Pricing Strategies

• Turn choice into market problem by establishing cost for lever which is sum of expected award 
to pull it plus estimation of ‘reward of knowledge gained’

• Pulling a never used lever could have a high value just from knowledge even if winning payoff is 
unknown

• Requires some good math to make sure the balance of exploit and explore are merged in 
balanced way
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Best Arm Identification

• Other approximate solutions
• Probability Matching

• Rather popular partially because they 
often can be done with user heuristics

• Thompson Sampling best known
• Engage with a lever in accordance with 

its currently known distribution of payoff
• Popular in A/B replacement online as it 

scales well
• Can collect many samples before you 

update the statistics that change the 
choices

• Works well with web-caching and 
delivery limitations of real sized 
websites
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Solutions
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Sci Kit?

• No directly
• One option is bayesianbandits 
• Built to integrate with scikit-learn and scipy
• https://github.com/bayesianbandits/bayesianbandits
• Example in code notebook

https://github.com/bayesianbandits/bayesianbandits
https://github.com/bayesianbandits/bayesianbandits


Next…neural networks

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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