ML – Unsupervised Learning

CPSC 383: Explorations in Artificial Intelligence and Machine Learning Fall 2025

Jonathan Hudson, Ph.D Associate Professor (Teaching) Department of Computer Science University of Calgary

August 27, 2025

Copyright © 2025

Categories

In **unsupervised learning**, the system is given a data set and must find some inherent patterns or structure.

 e.g. Netflix recommendations, identifying high-value customers, detecting unusual bank transactions, topic modeling

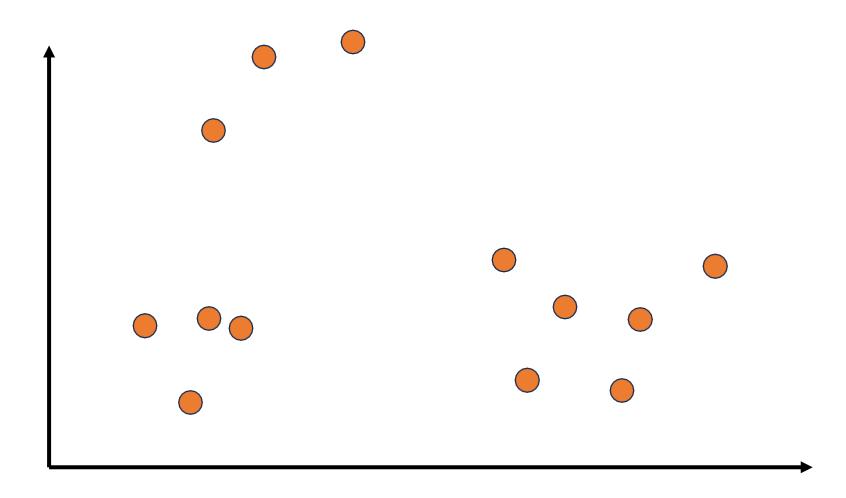
Categories

In **clustering**, the goal is to group similar objects together.

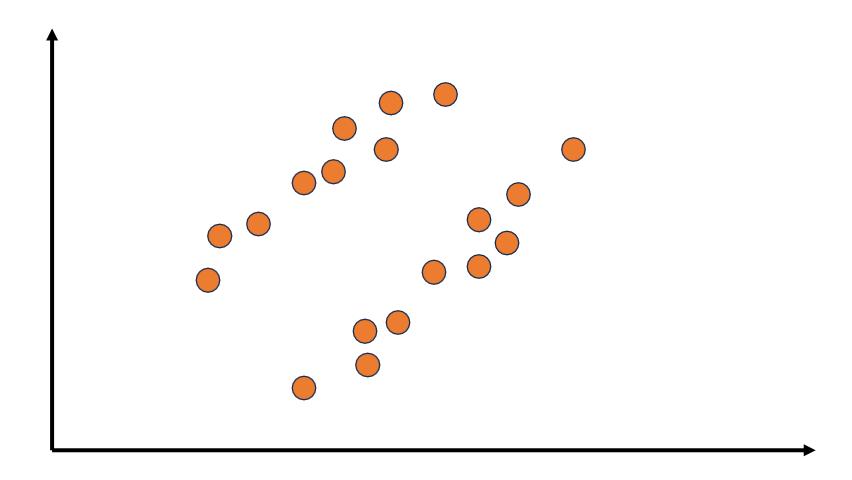
The algorithm needs to determine:

- What the appropriate groups are
- Which elements belong in which group

Example



Example



Unsupervised: Clustering

Clustering

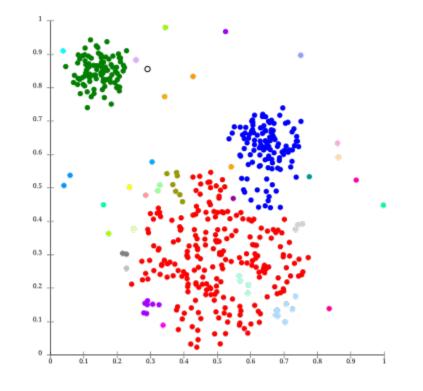
- Grouping unlabeled data based on similarities
- Find patterns
- Sometimes we have minor direction like
 - How many clusters
 - Quality of a good cluster
 - Relationship of clusters
- Most common intro example
 - K-means clustering
 - Ask for k clusters of data and algorithm attempts to create them
 - Often usage has you run k-means with differing sizes and contrasting results

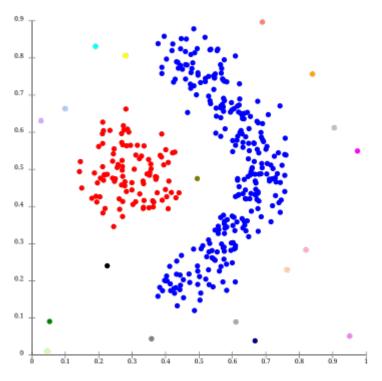
Clustering Usage

- Usages
 - Grouping similar data points
 - Locality
 - Similar properties
 - Similar outcomes
 - Customer segmentation -> Target advertisements
 - Medical imaging -> Find areas that share a property of note
 - Social network analysis > Who is friends with who
 - Security -> Anomaly detection

Clustering Goals

- Clusters goal may have a desired shape
 - Ex. Circular
- Or maybe not be restrained to a particular shape
- Goal can also be to force every point to be part of a cluster (hard clustering), or soft where goal is points end up with likelihood of membership





Clustering Categories

- Centroid based Clustering
 - Dictated count of clusters (k), group data based on similarity measure, ex. Euclidean
 - Need methods to guess a good k (scientifically!)
 - Circular centroid relativism (k-means)
- Density based Clustering
 - Density of cluster, irregular shapes much easier
- Connectivity based Clustering
 - Hierarchical, make strong small clusters and then merge them to most similar other clusters
- Distribution based Clustering
 - Group things based on behaviour related to a distribution, similar to density but density decision points have relationship to a more flexible distribution

K-Means

Initialize k **means** with random values

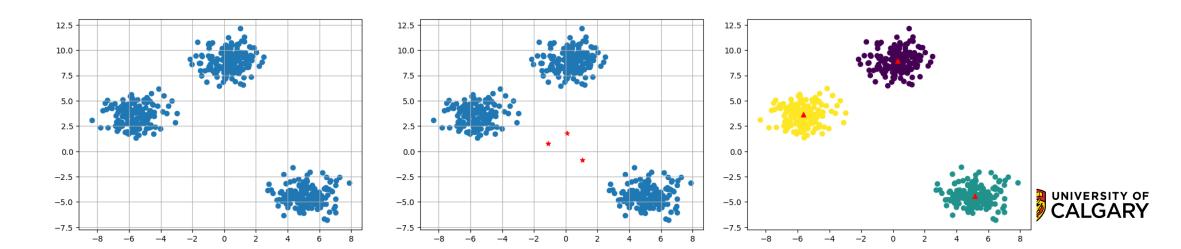
While more iterations left:

Loop through all the items

Find the **mean** closest to that item

Assign item to cluster of that mean

Update mean by shifting it to average of its cluster

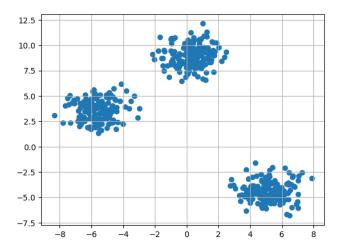


Not too hard to do yourself

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
#Make data
```

X,y = make_blobs(n_samples = 500,n_features = 2,centers = 3,random_state = 23)

#Plot data

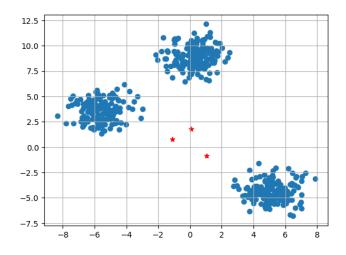


Make random clusters

```
k = 3
clusters = {}
np.random.seed(23)
for idx in range(k):
  center = 2*(2*np.random.random((X.shape[1],))-1)
  points = []
  cluster = {
    'center': center,
    'points' : []
  clusters[idx] = cluster
```


Plot clusters

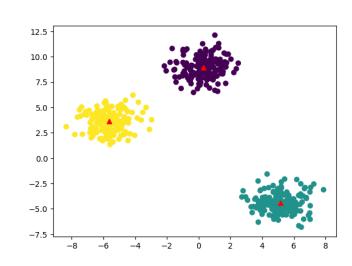
```
#Plot points
plt.scatter(X[:,0],X[:,1])
plt.grid(True)
#Plot cluster means (the random ones)
for i in clusters:
  center = clusters[i]['center']
  plt.scatter(center[0],center[1],marker = '*',c = 'red')
plt.show()
```



Plot clusters

```
clusters = assign clusters(X,clusters) #Put points in X into clusters
clusters = update_clusters(X,clusters) #Update cluster means
pred = pred cluster(X,clusters) #Points -> cluster, for plotting coloured clusters
```

```
#Plot points
   plt.scatter(X[:,0],X[:,1],c = pred)
   #Plot means
   for i in clusters:
     center = clusters[i]['center']
     plt.scatter(center[0],center[1],marker = '^',c = 'red')
plt.show()
```



Sci Kit (tutorials)

```
from sklearn.cluster import Kmeans
# Make model
# Fit model
# Use model to predict y (pred)
#Plot data is the same
plt.scatter(X[:,0],X[:,1],c = pred)
#We use use kmeans cluster data
for i in kmeans.cluster centers:
    plt.scatter(i[0],i[\overline{1}],marke\overline{r} = '^',c = 'red')
plt.show()
```


Unsupervised: Association Rules Learning

- Finding relationships in data (implications)
 - If this then that
- Market Analysis is common
 - If you bought milk, then you also bought cookies
 - So we will arrange those items in store to create desired behaviour
 - For example put them at locations in store that require you to traverse it and be exposed to more purchase choices

Apriori Algorithm

- Agrawal & Srikant 1994
 - Find frequent itemsets
 - Boolean association rule mining
 - Finds an answer to size k, to then find size k+1 (apriori)
- Apriori property
 - All subsets g of a frequent itemset f (g subset of f)
 - Must be frequent themselves
- Lemma
 - If an itemset g is infrequent then all its supersets (g superset of f)
 - Are infrequent

Input

TRANS.	Item1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

Input

TRANS.	Item1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

Requirements

• Support count minimum: 2

• Confidence: 60%

Input

TRANS.	Item1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

Requirements

• Support count minimum: 2

• Confidence: 60%

• K = 1

Item	Count
1	6
2	7
3	6
4	2
5	2

Input

TRANS.	Item1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

- Requirements
 - Support count minimum: 2
 - Confidence: 60%
- K = 1

Item	Count
1	6
2	7
3	6
4	2
5	2

 All pass minimum support count so move to K=2

- Requirements
 - Support count minimum: 2
 - Confidence: 60%
- K = 1

Item(1)	Count
1	6
2	7
3	6
4	2
5	2

• K=2

Item(2)	Count
12	
13	
14	
15	
23	
24	
25	
34	
35	
45	

Join prior size
Each subset should have K2 elements in common
So for here 0 in common

Requirements

• Support count minimum: 2

• Confidence: 60%

TRANS.	ltem1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

• K=2

Item(2)	Count
12	4
13	4
14	1
15	2
23	4
24	2
25	2
34	0
35	1
45	0

Requirements

• Support count minimum: 2

• Confidence: 60%

• K=2

Item(2)	Count
12	4
13	4
14	1
15	2
23	4
24	2
25	2
34	0
35	1
45	0

 All subsets of these itemsets are in K=1

Requirements

• Support count minimum: 2

• Confidence: 60%

• K=2

Item(2)	Count
12	4
13	4
15	2
23	4
24	2
25	2

- All subsets of these itemsets are in K=1
- Shorten to minimum support of 2

- Requirements
 - Support count minimum: 2
 - Confidence: 60%
- K = 2

Item(2)	Count
12	4
13	4
15	2
23	4
24	2
25	2

• K=3

Item(3)	Count
123	
124	
125	
135	
234	
235	
245	

Join prior size
Each subset should have K2 elements in common
So for here 1 in common

Requirements

• Support count minimum: 2

• Confidence: 60%

TRANS.	ltem1	Item2	Item3	Item4	Item5
1	YES	YES			YES
2		YES		YES	
3		YES	YES		
4	YES	YES		YES	
5	YES		YES		
6		YES	YES		
7	YES		YES		
8	YES	YES	YES		YES
9	YES	YES	YES		

• K=3

Item(3)	Count
123	2
124	1
125	2
135	1
234	0
235	1
245	0

Requirements

• Support count minimum: 2

• Confidence: 60%

• K=3

Item(3)	Count
123	2
124	1
125	2
135	1
234	0
235	1
245	0

 All subsets of these itemsets are in K=2

Requirements

• Support count minimum: 2

• Confidence: 60%

• K=3

Item(3)	Count	
123	2	
125	2	

- All subsets of these itemsets are in K=2
- Shorten to minimum support of 2

- Requirements
 - Support count minimum: 2
 - Confidence: 60%
- K = 3

Item(3)	Count
123	2
125	2

• K=4

Item(4)	Count
1235	1

Join prior size
Each subset should have K2 elements in common
So for here 2 in common

- Below minimum support count of 2
- So we would remove and since we have none left at K=4 we stop algorithm

- But we aren't done
- Confidence 60% needed

- Remember we are looking for association rules
 - So far we have these two tables on the right
- These are just all bought at same time
- But we want to know if user buys 1 if they also buy 2
- Or if user buys 12 do they also buy 3
- Or if user buys 1 do they also buy 23
- Etc.

•	So	how	do	we	get	these
---	----	-----	----	----	-----	-------

Item(2)	Count	Item(3)	Count
12	4	123	2
13	4	125	2
15	2		
23	4		
24	2		
25	2		

- Confidence(A->B)=
 - Support_count(AUB) / Support_count(A)
- Confidence(1->2)=
 - Support_count(12) / Support_count(1)
 - 4/6
 - =2/3=66.6%
- So this rule is one we would keep
- Let's try a bigger rule

Item(2)	Count	Item(3)	Count
12	4	123	2
13	4	125	2
15	2		
23	4		
24	2		
25	2		

- Confidence(A->B)=
 - Support_count(AUB) / Support_count(A)
- Confidence(12->3)=
 - Support_count(123) / Support_count(12)
 - 2/4
 - 50%
- Confidence(1->23)=
 - Support_count(123) / Support_count(1)
 - 2/6
 - 33.333%

Item(2)	Count	Item(3)	Count
12	4	123	2
13	4	125	2
15	2		
23	4		
24	2		
25	2		

 Neither of these are exceed our threshold of 60% (0.6)

Limitations of Apriori

- Often rather slow with interesting sized dataset
- For example, if there are 10⁴ from frequent 1- itemsets, it need to generate more than 10⁷ candidates into 2-length which in turn they will be tested and accumulate.
- Furthermore, to detect frequent pattern in size 100 i.e. v1, v2... v100, it have to generate 2^100 candidate itemsets that yield on costly and wasting of time of candidate generation.
- So, it will check for many sets from candidate itemsets, also it will scan database many times repeatedly for finding candidate itemsets.
- Apriori will be very low and inefficiency when memory capacity is limited with large number of transactions.

Sci Kit

- mlxtend library based on ci kit
- Particularly mlxtend.frequent_patterns module

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
dataset = [["item1", "item2", "item5"], ["item2", "item4"],...]
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
display(df)
```


Sci Kit

```
count = len(dataset)
threshold = 0.6
frequent itemsets = apriori(df,
                    min support=2/count,
                    use colnames=True)
print(frequent itemsets)
rules = association rules (frequent itemsets,
                               metric="confidence",
                               min threshold=threshold,
                               num itemsets=rule count)
print(rules)
```


Next...supervised learning

