
ML – Unsupervised Learning
CPSC 383: Explorations in Artificial Intelligence and Machine Learning
Fall 2025

Jonathan Hudson, Ph.D
Associate Professor (Teaching)
Department of Computer Science
University of Calgary

August 27, 2025

Copyright © 2025

2

Categories

In unsupervised learning, the system is given a data set and must find
some inherent patterns or structure.
• e.g. Netflix recommendations, identifying high-value customers,

detecting unusual bank transactions, topic modeling

3

Categories

In clustering, the goal is to group similar objects together.

The algorithm needs to determine:
• What the appropriate groups are
• Which elements belong in which group

4

Example

5

Example

6

Unsupervised: Clustering

7

Clustering

• Grouping unlabeled data based on similarities
• Find patterns
• Sometimes we have minor direction like

• How many clusters
• Quality of a good cluster
• Relationship of clusters

• Most common intro example
• K-means clustering

• Ask for k clusters of data and algorithm attempts to create them
• Often usage has you run k-means with differing sizes and contrasting results

8

Clustering Usage

• Usages
• Grouping similar data points

• Locality
• Similar properties
• Similar outcomes

• Customer segmentation -> Target advertisements
• Medical imaging -> Find areas that share a property of note
• Social network analysis - > Who is friends with who
• Security -> Anomaly detection

9

Clustering Goals

• Clusters goal may
have a desired shape

• Ex. Circular

• Or maybe not be
restrained to a
particular shape

• Goal can also be to
force every point to
be part of a cluster
(hard clustering), or
soft where goal is
points end up with
likelihood of
membership

10

Clustering Categories

• Centroid based Clustering
• Dictated count of clusters (k), group data based on similarity measure, ex. Euclidean
• Need methods to guess a good k (scientifically!)
• Circular centroid relativism (k-means)

• Density based Clustering
• Density of cluster, irregular shapes much easier

• Connectivity based Clustering
• Hierarchical, make strong small clusters and then merge them to most similar other clusters

• Distribution based Clustering
• Group things based on behaviour related to a distribution, similar to density but density decision

points have relationship to a more flexible distribution

11

K-Means

Initialize k means with random values
While more iterations left:
 Loop through all the items
 Find the mean closest to that item
 Assign item to cluster of that mean
 Update mean by shifting it to average of its cluster

12

Not too hard to do yourself

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
#Make data
X,y = make_blobs(n_samples = 500,n_features = 2,centers = 3,random_state = 23)
#Plot data
fig = plt.figure(0)
plt.grid(True)
plt.scatter(X[:,0],X[:,1])
plt.show()

https://www.geeksforgeeks.org/k-means-clustering-introduction/

13

Make random clusters

k = 3
clusters = {}
np.random.seed(23)
for idx in range(k):
 center = 2*(2*np.random.random((X.shape[1],))-1)
 points = []
 cluster = {
 'center' : center,
 'points' : []
 }
 clusters[idx] = cluster

14

Plot clusters

#Plot points
plt.scatter(X[:,0],X[:,1])
plt.grid(True)
#Plot cluster means (the random ones)
for i in clusters:
 center = clusters[i]['center']
 plt.scatter(center[0],center[1],marker = '*',c = 'red')
plt.show()

15

Plot clusters

clusters = assign_clusters(X,clusters) #Put points in X into clusters
clusters = update_clusters(X,clusters) #Update cluster means
pred = pred_cluster(X,clusters) #Points -> cluster, for plotting coloured clusters

#Plot points
plt.scatter(X[:,0],X[:,1],c = pred)
#Plot means
for i in clusters:
 center = clusters[i]['center']
 plt.scatter(center[0],center[1],marker = '^',c = 'red')
plt.show()

16

Sci Kit (tutorials)

from sklearn.cluster import Kmeans

Make model

Fit model

Use model to predict y (pred)

#Plot data is the same
plt.scatter(X[:,0],X[:,1],c = pred)
#We use use kmeans cluster data
for i in kmeans.cluster_centers_:
 plt.scatter(i[0],i[1],marker = '^',c = 'red')

plt.show()

17

Unsupervised: Association Rules
Learning

18

Association Rule Learning

• Finding relationships in data (implications)
• If this then that

• Market Analysis is common
• If you bought milk, then you also bought cookies

• So we will arrange those items in store to create desired behaviour
• For example put them at locations in store that require you to traverse it

and be exposed to more purchase choices

19

Apriori Algorithm

• Agrawal & Srikant 1994
• Find frequent itemsets
• Boolean association rule mining
• Finds an answer to size k, to then find size k+1 (apriori)

• Apriori property
• All subsets g of a frequent itemset f (g subset of f)

• Must be frequent themselves

• Lemma
• If an itemset g is infrequent then all its supersets (g superset of f)

• Are infrequent

20

Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

21

Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%

22

Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1
Item Count

1 6

2 7

3 6

4 2

5 2

23

Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1

• All pass minimum support count so
move to K=2

Item Count

1 6

2 7

3 6

4 2

5 2

24

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1

Association Rule Learning

• K=2

Item(2) Count

12

13

14

15

23

24

25

34

35

45

Join prior size
Each subset should have K-
2 elements in common
So for here 0 in common

Item(1) Count

1 6

2 7

3 6

4 2

5 2

25

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

Item(2) Count

12 4

13 4

14 1

15 2

23 4

24 2

25 2

34 0

35 1

45 0

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

26

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

• All subsets of these itemsets are in
K=1

Item(2) Count

12 4

13 4

14 1

15 2

23 4

24 2

25 2

34 0

35 1

45 0

27

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

• All subsets of these itemsets are in
K=1

• Shorten to minimum support of 2

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

28

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 2

Association Rule Learning

• K=3

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Join prior size
Each subset should have K-
2 elements in common
So for here 1 in common

Item(3) Count

123

124

125

135

234

235

245

29

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

Item(3) Count

123 2

124 1

125 2

135 1

234 0

235 1

245 0

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

30

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

• All subsets of these itemsets are in
K=2

Item(3) Count

123 2

124 1

125 2

135 1

234 0

235 1

245 0

31

• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

• All subsets of these itemsets are in
K=2

• Shorten to minimum support of 2

Item(3) Count

123 2

125 2

32

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 3

Association Rule Learning

• K=4

• Below minimum support count of 2
• So we would remove and since we

have none left at K=4 we stop
algorithm

• But we aren’t done
• Confidence 60% needed

Join prior size
Each subset should have K-
2 elements in common
So for here 2 in common

Item(4) Count

1235 1

Item(3) Count

123 2

125 2

33

• Remember we are looking for association rules
• So far we have these two tables on the right

• These are just all bought at same time
• But we want to know if user buys 1 if they also

buy 2
• Or if user buys 12 do they also buy 3
• Or if user buys 1 do they also buy 23
• Etc.

• So how do we get these

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2

34

• Confidence(A->B)=
• Support_count(A∪B) / Support_count(A)

• Confidence(1->2)=
• Support_count(12) / Support_count(1)
• 4/6
• =2/3=66.6%

• So this rule is one we would keep
• Let’s try a bigger rule

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2

35

• Confidence(A->B)=
• Support_count(A∪B) / Support_count(A)

• Confidence(12->3)=
• Support_count(123) / Support_count(12)
• 2/4
• 50%

• Confidence(1->23)=
• Support_count(123) / Support_count(1)
• 2/6
• 33.333%

• Neither of these are exceed our threshold of 60%
(0.6)

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2

36

Limitations of Apriori

• Often rather slow with interesting sized dataset
• For example, if there are 10^4 from frequent 1- itemsets, it need to generate

more than 10^7 candidates into 2-length which in turn they will be tested and
accumulate.

• Furthermore, to detect frequent pattern in size 100 i.e. v1, v2… v100, it have to
generate 2^100 candidate itemsets that yield on costly and wasting of time of
candidate generation.

• So, it will check for many sets from candidate itemsets, also it will scan
database many times repeatedly for finding candidate itemsets.

• Apriori will be very low and inefficiency when memory capacity is limited with
large number of transactions.

37

Sci Kit

• mlxtend library based on ci kit
• Particularly mlxtend.frequent_patterns module
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
dataset = [["item1","item2","item5"],["item2","item4"],…]
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
display(df)

38

Sci Kit

count = len(dataset)
threshold = 0.6
frequent_itemsets = apriori(df,
 min_support=2/count,
 use_colnames=True)
print(frequent_itemsets)

rules = association_rules(frequent_itemsets,
 metric="confidence",
 min_threshold=threshold,
 num_itemsets=rule_count)
print(rules)

Next…supervised learning

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	ML – Unsupervised Learning
	Categories
	Categories
	Example
	Example
	Unsupervised: Clustering
	Clustering
	Clustering Usage
	Clustering Goals
	Clustering Categories
	K-Means
	Not too hard to do yourself
	Make random clusters
	Plot clusters
	Plot clusters
	Sci Kit (tutorials)
	Unsupervised: Association Rules Learning
	Association Rule Learning
	Apriori Algorithm
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Association Rule Learning
	Limitations of Apriori
	Sci Kit
	Sci Kit
	Next…supervised learning

