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Categories

In unsupervised learning, the system is given a data set and must find 
some inherent patterns or structure.
• e.g. Netflix recommendations, identifying high-value customers, 

detecting unusual bank transactions, topic modeling
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Categories

In clustering, the goal is to group similar objects together.

The algorithm needs to determine:
• What the appropriate groups are
• Which elements belong in which group
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Example
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Example



6

Unsupervised: Clustering
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Clustering

• Grouping unlabeled data based on similarities
• Find patterns
• Sometimes we have minor direction like

• How many clusters
• Quality of a good cluster
• Relationship of clusters

• Most common intro example
• K-means clustering

• Ask for k clusters of data and algorithm attempts to create them
• Often usage has you run k-means with differing sizes and contrasting results
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Clustering Usage

• Usages
• Grouping similar data points

• Locality
• Similar properties
• Similar outcomes

• Customer segmentation -> Target advertisements
• Medical imaging -> Find areas that share a property of note
• Social network analysis - > Who is friends with who
• Security -> Anomaly detection
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Clustering Goals

• Clusters goal may 
have a desired shape

• Ex. Circular

• Or maybe not be 
restrained to a 
particular shape

• Goal can also be to 
force every point to 
be part of a cluster 
(hard clustering), or 
soft where goal is 
points end up with 
likelihood of 
membership 
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Clustering Categories

• Centroid based Clustering
• Dictated count of clusters (k), group data based on similarity measure, ex. Euclidean
• Need methods to guess a good k (scientifically!)
• Circular centroid relativism (k-means)

• Density based Clustering
• Density of cluster, irregular shapes much easier

• Connectivity based Clustering
• Hierarchical, make strong small clusters and then merge them to most similar other clusters

• Distribution based Clustering
• Group things based on behaviour related to a distribution, similar to density but density decision 

points have relationship to a more flexible distribution
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K-Means

Initialize k means with random values
While more iterations left:
 Loop through all the items
  Find the mean closest to that item
  Assign item to cluster of that mean
  Update mean by shifting it to average of its cluster
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Not too hard to do yourself

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
#Make data
X,y = make_blobs(n_samples = 500,n_features = 2,centers = 3,random_state = 23)
#Plot data
fig = plt.figure(0)
plt.grid(True)
plt.scatter(X[:,0],X[:,1])
plt.show()

https://www.geeksforgeeks.org/k-means-clustering-introduction/
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Make random clusters

k = 3
clusters = {}
np.random.seed(23)
for idx in range(k):
    center = 2*(2*np.random.random((X.shape[1],))-1)
    points = []
    cluster = {
        'center' : center,
        'points' : []
    }
    clusters[idx] = cluster
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Plot clusters

#Plot points
plt.scatter(X[:,0],X[:,1])
plt.grid(True)
#Plot cluster means (the random ones)
for i in clusters:
    center = clusters[i]['center']
    plt.scatter(center[0],center[1],marker = '*',c = 'red')
plt.show()
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Plot clusters

clusters = assign_clusters(X,clusters) #Put points in X into clusters
clusters = update_clusters(X,clusters) #Update cluster means
pred = pred_cluster(X,clusters) #Points -> cluster, for plotting coloured clusters

#Plot points
plt.scatter(X[:,0],X[:,1],c = pred)
#Plot means
for i in clusters:
    center = clusters[i]['center']
    plt.scatter(center[0],center[1],marker = '^',c = 'red')
plt.show()
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Sci Kit (tutorials)

from sklearn.cluster import Kmeans

# Make model

# Fit model

# Use model to predict y (pred)

#Plot data is the same
plt.scatter(X[:,0],X[:,1],c = pred)
#We use use kmeans cluster data
for i in kmeans.cluster_centers_:
  plt.scatter(i[0],i[1],marker = '^',c = 'red')

plt.show()
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Unsupervised: Association Rules 
Learning 
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Association Rule Learning

• Finding relationships in data (implications)
• If this then that

• Market Analysis is common
• If you bought milk, then you also bought cookies

• So we will arrange those items in store to create desired behaviour
• For example put them at locations in store that require you to traverse it 

and be exposed to more purchase choices
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Apriori Algorithm

• Agrawal & Srikant 1994
• Find frequent itemsets
• Boolean association rule mining
• Finds an answer to size k, to then find size k+1  (apriori)

• Apriori property
• All subsets g of a frequent itemset f (g subset of f)

• Must be frequent themselves

• Lemma
• If an itemset g is infrequent then all its supersets (g superset of f)

• Are infrequent
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Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES
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Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%
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Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1
Item Count

1 6

2 7

3 6

4 2

5 2
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Association Rule Learning

• Input

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES

• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1

• All pass minimum support count so 
move to K=2

Item Count

1 6

2 7

3 6

4 2

5 2
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• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 1

Association Rule Learning

• K=2

Item(2) Count

12

13

14

15

23

24

25

34

35

45

Join prior size 
Each subset should have K-
2 elements in common
So for here 0 in common

Item(1) Count

1 6

2 7

3 6

4 2

5 2
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

Item(2) Count

12 4

13 4

14 1

15 2

23 4

24 2

25 2

34 0

35 1

45 0

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

• All subsets of these itemsets are in 
K=1

Item(2) Count

12 4

13 4

14 1

15 2

23 4

24 2

25 2

34 0

35 1

45 0
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=2

• All subsets of these itemsets are in 
K=1

• Shorten to minimum support of 2

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2
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• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 2

Association Rule Learning

• K=3

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Join prior size
Each subset should have K-
2 elements in common
So for here 1 in common

Item(3) Count

123

124

125

135

234

235

245
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

Item(3) Count

123 2

124 1

125 2

135 1

234 0

235 1

245 0

TRANS. Item1 Item2 Item3 Item4 Item5

1 YES YES YES

2 YES YES

3 YES YES

4 YES YES YES

5 YES YES

6 YES YES

7 YES YES

8 YES YES YES YES

9 YES YES YES
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

• All subsets of these itemsets are in 
K=2

Item(3) Count

123 2

124 1

125 2

135 1

234 0

235 1

245 0
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• Requirements
• Support count minimum: 2
• Confidence: 60%

Association Rule Learning

• K=3

• All subsets of these itemsets are in 
K=2

• Shorten to minimum support of 2

Item(3) Count

123 2

125 2
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• Requirements
• Support count minimum: 2
• Confidence: 60%

• K = 3

Association Rule Learning

• K=4

• Below minimum support count of 2
• So we would remove and since we 

have none left at K=4 we stop 
algorithm

• But we aren’t done
• Confidence 60% needed

Join prior size
Each subset should have K-
2 elements in common
So for here 2 in common

Item(4) Count

1235 1

Item(3) Count

123 2

125 2
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• Remember we are looking for association rules
• So far we have these two tables on the right

• These are just all bought at same time 
• But we want to know if user buys 1 if they also 

buy 2
• Or if user buys 12 do they also buy 3
• Or if user buys 1 do they also buy 23
• Etc.

• So how do we get these

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2
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• Confidence(A->B)=
• Support_count(A∪B) / Support_count(A)

• Confidence(1->2)=
• Support_count(12) / Support_count(1)
• 4/6
• =2/3=66.6%

• So this rule is one we would keep
• Let’s try a bigger rule

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2
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• Confidence(A->B)=
• Support_count(A∪B) / Support_count(A)

• Confidence(12->3)=
• Support_count(123) / Support_count(12)
• 2/4
• 50%

• Confidence(1->23)=
• Support_count(123) / Support_count(1)
• 2/6
• 33.333%

• Neither of these are exceed our threshold of 60% 
(0.6)

Association Rule Learning

Item(2) Count

12 4

13 4

15 2

23 4

24 2

25 2

Item(3) Count

123 2

125 2
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Limitations of Apriori

• Often rather slow with interesting sized dataset
• For example, if there are 10^4 from frequent 1- itemsets, it need to generate 

more than 10^7 candidates into 2-length which in turn they will be tested and 
accumulate. 

• Furthermore, to detect frequent pattern in size 100 i.e. v1, v2… v100, it have to 
generate 2^100 candidate itemsets that yield on costly and wasting of time of 
candidate generation. 

• So, it will check for many sets from candidate itemsets, also it will scan 
database many times repeatedly for finding candidate itemsets. 

• Apriori will be very low and inefficiency when memory capacity is limited with 
large number of transactions.
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Sci Kit

• mlxtend library based on ci kit
• Particularly mlxtend.frequent_patterns module
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
dataset = [["item1","item2","item5"],["item2","item4"],…]
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
display(df)
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Sci Kit

count = len(dataset)
threshold = 0.6
frequent_itemsets = apriori(df, 
    min_support=2/count, 
    use_colnames=True)
print(frequent_itemsets)

rules = association_rules(frequent_itemsets, 
      metric="confidence",
      min_threshold=threshold, 
      num_itemsets=rule_count)
print(rules)



Next…supervised learning

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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