
Path-finding
CPSC 383: Explorations in Artificial Intelligence and Machine Learning
Fall 2025

Jonathan Hudson, Ph.D
Associate Professor (Teaching)
Department of Computer Science
University of Calgary

August 27, 2025

Copyright © 2025

2

Outline

• Informed Search
• Best-First Search
• Greedy Search
• A* Search
• Comparison and Use
• Admissable Heuristics
• Generating Admissable Heuristics

3

Informed Search

4

Best-first Search

• Informed search methods have access to a heuristic
function that estimates the cost of a solution

• Best-First Search: use an evaluation function for each
node estimate of “desirability”

• Rationality!

• Special cases:
• greedy search
• A∗ search

5

Greedy Search

6

Greedy Search

• Evaluation function h (heuristic)

• Estimate value of node expansion to solution and perform it next

• Variant of uniform cost search
• costing is not heuristic and based on specific problem

• Greedy search expands the node that appears to be closest to goal
• As evaluated by h

7

Greedy Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first

https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first

8

Greedy Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first

https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first
https://www.redblobgames.com/pathfinding/a-star/introduction.html#greedy-best-first

9

Example: Romania

• Currently in Arad.
• Need to get to Bucharest

• Formulate goal:
• be in Bucharest

• Formulate problem
• states: various cities
• actions: drive between cities

• Find solution
• sequence of cities

10

Greedy search example

Arad
366

E.g., hSLD(n) = straight-line distance from n to Bucharest

11

Arad

Sibiu
253

Timisoara
329

Zerind
374

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

12

Arad

Sibiu Timisoara
329

Zerind
374

Arad
366

Fagaras
176

Oradea
380

RimnicuVilcea
193

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

13

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

14

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

140+99+211

15

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

But 140+99+211 is more than
140+80+97+101

By following a local optima via
heuristic we missed the global optima

16

Properties of Greedy Search

• Complete: No
• can get stuck in infinite tree
• Complete in finite space with repeated-state checking

• Time: exponential
• but a good heuristic can give dramatic improvement

• Space: Keeps all nodes in memory

• Optimal: No (we reach Bucharest and don’t explore
other paths)

17

A* Search

18

A* search

• Idea: Start greedy (only forward looking was an issue)
• Add backwards looking, confirm one property about new heuristic

• Evaluation function f (n) = g(n) + h(n)
• g(n) = cost so far to reach n (backwards looking)
• h(n) = estimated cost to goal from n (greedy forward-looking part)
• f (n) = estimated total cost of path (A* heuristic)

• A∗ search requires an admissible heuristic (fully defined later)
• Short defn: never overestimates the cost

• Theorem: A∗ search is optimal

19

A* search example

Arad
366=0+366

E.g., hSLD(n) = straight-line distance from n to Bucharest

20

Arad

Timisoara
447=118+329

A* search example

Zerind
449=75+374

Sibiu
393=140+253

E.g., hSLD(n) = straight-line distance from n to Bucharest

21

Arad

Sibiu

RimnicuVilceaArad Fagaras Oradea

Timisoara
447=118+329

A* search example

Chapter4,Sections1 2

21

Zerind
449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

E.g., hSLD(n) = straight-line distance from n to Bucharest

Here we are different than Greedy as we
explore Rimnicu Vilcea instead of Faragas next
due to heuristic

22

Arad

Sibiu Timisoara
447=118+329

Zerind
449=75+374

RimnicuVilcea

Craiova Pitesti Sibiu
526=366+160 417=317+100 553=300+253

A* search example

Arad Fagaras Oradea
646=280+366 415=239+176 671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We return to look at Faragas because paths out
of Rimnicu Vilcea aren’t clearly better

23

Arad

Sibiu

RimnicuVilceaFagaras

Timisoara
447=118+329

A* search example

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Sibiu
553=300+253

Craiova Pitesti
526=366+160 417=317+100

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go back to Rimnicu Vilcea to explore as at
path there is more intriguing than through
Faragas (at the moment)

24

Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest
418=418+0

A* search example

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Craiova
526=366+160

Sibiu
553=300+253

Craiova
615=455+160

RimnicuVilcea

607=414+193

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

Expand Pitesti

25

Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest
418=418+0

A* search example

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Craiova
526=366+160

Sibiu
553=300+253

Craiova
615=455+160

RimnicuVilcea

607=414+193

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go to Bucharest as minimal next transition
(but out of Pitesti instead of Faragas!) and find
the shortest path!

26

Properties of A* Search

• Complete: Yes
• Unless infinite expansions

• Time: exponential
• but only in regard to heuristic error

relative to solution

• Space: Keeps all nodes in memory

• Optimal: Yes
• Cannot move to a great cost contour until

smaller one is checked, i.e. will always find
smallest first

27

Comparison and Use

28

Comparison

Uniform Cost
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

30

Admissable Heuristics

31

Admissable Heuristic

• Evaluation function f = g + h
• g = cost so far to reach n
• h = estimated cost to goal (heuristic)
• f = estimated total cost goal

• h is still an estimate of cost allows guidance of what to explore first
• An admissable heuristic h -> never overestimates

• If something has true additional cost of 500 then h never returns larger than 500
• We are allowed to treat things as better than they truly are

• How often we are inaccurate like this just costs us wasted effort

• A good admissible heuristic will be more accurate, a useless one would
estimate 0 and have no benefit to search

32

Optimality of A∗ (standard proof)

• Suppose some suboptimal goal G2 has been generated and is in the queue. Let
n be an unexpanded node on a shortest path to an optimal goal G.

f (G2) = g(G2) since h(G2) = 0
> g(G) since G2 is suboptimal
≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion

33

Optimality of A∗ (more useful)

• Lemma: A∗ expands nodes in order of increasing f value
• Gradually adds “f -contours” of nodes (lowest cost breadth like expansion)

34

Generating Admissable Heuristic
Relax

35

• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =
• h2(S) =

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics

https://murhafsousli.github.io/8puzzle/#/

36

• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =?? 6
• h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics

37

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates h1 and is
better for search
• Typical search costs:
• d = 14

• Iterative deepening = 3,473,941 nodes
• A∗(h1) = 539 nodes
• A∗(h2) = 113 nodes

• d = 24
• Iterative deepening ≈ 54,000,000,000 nodes
• A∗(h1) = 39,135 nodes
• A∗(h2) = 1,641 nodes

38

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates h1 and is
better for search

• Given any admissible heuristics ha, hb, h(n) = max(ha(n), hb(n))
• is also admissible and dominates ha, hb

39

Relaxed problems

• Admissible heuristics can be derived from the exact
• solution cost of a relaxed version of the problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution

• Key point: the optimal solution cost of a relaxed problem is no greater than the
optimal solution cost of the real problem

40

Summary

41

Summary

• Informed search methods have access to a heuristic function h that estimates
the cost of a solution

• Best-First Search is a node expansion version that ranks nodes using heuristic
evaluation function of best gain

• Greedy Search in best-first algorithm that guesses cost of adding node to find
one solution, but heuristics does not guarantee optimal

• A* Search is variant of greedy that uses admissible heuristic to explore different
options of paths and guarantees optimal (but more exploration).

• Admissable Heuristics are optimistic cost predictions that help guide
exploration but don’t make mistakes that miss best solution.

• You can often relax requirements of problem to generate admissible heuristics,
and combine multiple to get an even better one

Next…complex search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Path-finding
	Outline
	Informed Search
	Best-first Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Example:	Romania
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Properties of Greedy Search
	A* Search
	A* search
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	Properties of A* Search
	Comparison and Use
	Comparison
	Admissable Heuristics
	Admissable Heuristic
	Optimality of A∗ (standard proof)
	Optimality of A∗ (more useful)
	Generating Admissable Heuristic
	Admissible heuristics
	Admissible heuristics
	Dominance
	Dominance
	Relaxed problems
	Summary
	Summary
	Next…complex search

