
CPSC 383: Explorations in Artificial Intelligence and
Machine Learning
Assignment 1: Symbolic AI, Agents, Search, Pathfinding, A*

Weight: 15%

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do, and an
excellent way to learn. However, the work you hand-in must ultimately be your work. This is
essential for you to benefit from the learning experience, and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work, but is represented as such, is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the
university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1. Cite all sources of code that you hand-in that are not your original work. You can put the citation into
comments in your program. For example, if you find and use code found on a web site, include a comment
that says, for example:

the following code is from
https://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code that is not primarily developed by yourself. Cited material should never
be used to complete core assignment specifications. You can and should verify and code you are concerned
with your instructor/TA before submission.

3. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code that it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before
writing your code. If you exchange code with another student, write code while discussing it with a fellow
student, or copy code from another person’s screen, then this code is not yours.

4. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

5. Making your code available, even passively (e.g. online repository accessible to other students), for others to
copy, or potentially copy, is also plagiarism.

6. We will be looking for plagiarism in all code submissions, possibly using automated software designed for the
task. For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).

7. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor
to get help than it is to plagiarize. The most common penalty is an F on a plagiarized assignment.

8. For assignments limited use of generative AI in writing assistance is acceptable. For example, grammar
suggestion, or code suggestion tools for programming. Programming or text that is largely generative AI
produced is not allowed. Learners are ultimately accountable for the work they submit. Use of AI tools must

be documented in an appendix for the assignment. The documentation should include what tool(s) were used,
how they were used, and how the results from the AI were incorporated into the submitted work. Failure to
cite the use of AI generated content in an assignment will be considered a breach of academic integrity and
subject to Academic Misconduct procedures.

Late Penalty

For late individual assignments, those submitted within 24 hours of the initial deadline will
receive 10% off, and within 48 hours will receive 20% off. After 48 hours, no late assignments
will be accepted. -10% of 20 marks is -2 marks. -20% is -4.

Goal

Within the provided AEGIS system modify the provided Python agent code to allow the agent
to path-find using A* to the SURVIVOR grid location. The solution must be written by you the
student and not use existing libraries.

Technology

AEGIS, Python 3

Submission Instructions

You must submit your assignment electronically using D2L. Use the Assignment 1 dropbox in
D2L for a final codebase electronic submission. In D2L, you can submit multiple times over the
top of a previous submission. Do not wait until the last minute to attempt to submit. You are
responsible if you attempt this, and time runs out. Your assignment must be completed in
Python 3.

Description

What is AEGIS?

The Goobs have sent an elite space force to occupy AEGIS, the galaxy's central hub dedicated to
saving lives across the galaxy. This futuristic space station floats in a serene nebula, and it's the
last beacon of hope in the vast and dangerous expanse of space. Equipped with powerful
scanners and teleportation gates, AEGIS connects distant worlds and provides a lifeline in the
galaxy's most perilous regions. From here, they embark on their journeys, navigating the
galaxy's dangers to rescue those in distress and tackle the most formidable dangers.

AEGIS is a simulated agent disaster rescue scenario environment written in Python 3 with an
optional Electron-based GUI. AEGIS consists of a simulation controller that manages all
communication with agents, executes the simulation, and maintains the current state of the
world. It updates the world as events happen. If the optional GUI is used, the GUI displays real-
time updates of the world’s state during the simulation. Additionally, the GUI allows users to
create their own worlds.

Full documentation is available here and students are expected to read this themselves to
complete the assignment: https://aegis-game.github.io/docs/ Tutorials will also introduce
students to the AEGIS system.

 The API is primarily under https://aegis-game.github.io/docs/docs/api/,

and getting started information under https://aegis-game.github.io/docs/docs/getting-
started/installation/

The AEGIS simulation is turn-based. For assignment 1 you will have one agent connect to the
server. On connection agents are given a simplified rectangular grid view of the world which
includes if a grid is safe to move on (KILLER grid locations are instant-‘death’, other grid types
are safe to move on) However, grid locations do each have a MOVE_COST of energy. If an agent
runs out of energy they also ‘die’ for remainder of simulation. GET_SURVS() can be used to find
the LOCATION of the ONE SURVIVOR. It is your goal to save the ONE SURVIVOR in the grid
without running out of energy as efficiently as possible. Efficiency is to limit the energy use of
your agent to the minimal possible given the knowledge available to the agent.

A simulation consists of multiple rounds, with each round being a single time step in the
simulated world. During each round each agent can pick one action to take. Agents have energy
that is expended each time they use commands. If their energy expiries the agent becomes
non-functional.

For assignment 1 your ONE AGENT needs only to be concerned with the commands of
MOVE(DIRECTION) and SAVE() (save survivor). These are described at:

https://aegis-game.github.io/docs/docs/api/agent/

MOVE(DIRECTION) allows an agent on its turn to move in 1 of the 9 neighboring grid locations
(or CENTER to not move).

https://aegis-game.github.io/docs/docs/api/direction/

The result of a MOVE action informs an agent of its remaining energy levels and information
about the surrounding grid locations around the agent’s new location. This information will be
stored for you when received.

Once the agent moves onto the grid location containing the survivor the SAVE() command is
used to end the simulation. If there is no survivor at that location the SAVE() command will
have no effect. Agents must choose to send only one of these two commands each turn of the
simulation.

Assignment Challenge

Your agent in AEGIS will begin on a grid location that does not contain the SURVIVOR. This is a
SPAWN grid location. It will be your job to move your agent each round until it is at the

https://aegis-game.github.io/docs/
https://aegis-game.github.io/docs/docs/api/
https://aegis-game.github.io/docs/docs/getting-started/installation/
https://aegis-game.github.io/docs/docs/getting-started/installation/
https://aegis-game.github.io/docs/docs/api/agent/
https://aegis-game.github.io/docs/docs/api/direction/

SURVIVOR location and then use SAVE() to end the simulation. To accomplish this goal, you will
be using A*, a very common path-finding algorithm. A*, as introduced in class, is a graph search
algorithm that uses an admissible heuristic to provide an optimal sequence of DIRECTION that
can be used in MOVE(DIRECTION) commands so that your agent reaches the survivor as
efficiently as possible. You will be creating an A* solution for this assignment that can solve
three versions of the AEGIS path-finding problem. (Note, it is acceptable to just do version 3
and it will solve version 1 and 2. We will have equal tests for each version in case your A*
doesn’t work as well for a later version challenge.)

1. In version 1, all move costs will be equal (1 energy). Your agent will need to use A* to
avoid instant-death KILLER grids to navigate to the SURVIVOR in the shortest path
(fewest MOVE(DIRECTION) commands) possible. This minimizes both energy and
MOVE(DIRECTION) commands. Note, that sometimes the path will not be a straight-
forward and require some maze-solving.
Your agent will know all these costs from the start and you should ensure the USER
SETTING below is toggle OFF (on hides move costs right now). (The default agent does
MOVE(CENTER) on round 1 to reveal hidden MOVE_COSTS at start, but that is
unnecessary here and would waste energy. However, this is useful in version 3 so we
except it to be retained.)

2. In version 2, AEGIS will provide move costs of varying value. It is your job to find the
path to the survivor that minimizes the energy MOVE_COSTS of the agent. This path
may be longer than the shortest quantity of MOVE(DIRECTION) commands that ignores
MOVE_COST energy.
Your agent will know all these costs from the start and you should ensure the USER
SETTING below is toggle OFF (on hides move costs right now). (The default agent does
MOVE(CENTER) on round 1 to reveal hidden MOVE_COSTS at start, but that is
unnecessary here and would waste energy. However, this is useful in version 3 so we
except it to be retained.)

3. In version 3, AEGIS will only provide MOVE_COST values as the result of MOVE() actions

(not at the start of the simulation). Each time you move to a new LOCATION you will
have the 9 adjacent MOVE_COST around the agent revealed.
Your agent will have to solve the path-finding problem without knowing move costs at
the beginning. In other words, you will have to assume default move costs, and as your

agent completes MOVE() actions and learns more, your agent will have to re-assess the
best path to the survivor. Note, this could mean pathfinding in one direction before
finding that there was a previously unrevealed wall of ‘instant-death’ energy
MOVE_COST you have to back-track from to avoid.
Your agent will NOT know all these costs from the start and you should ensure the USER
SETTING below is toggle ON (on hides move costs right now). (The default agent does
MOVE(CENTER) on round 1 to reveal hidden MOVE_COSTS at start.)

Note, your agent should tie-break equal paths choices with the order of DIRECTION -> N, NE, E,
SE, S, SW, W, NW, C. It is necessary to follow this tie break for full credit on our test maps.

Solution

A* star is a very well-known algorithm https://en.wikipedia.org/wiki/A*_search_algorithm .
You’ll find even better information attending your tutorial on pathfinding for pseudo-code (as
well as a participation).

It is possible to find other pseudo-code and explanations all over the internet. If you use such a
resource (including that Wikipedia link], then you should reference it in your code submission. I
do not recommend this over going to tutorials and following the given suggestion. Be vary of
pathfinding solutions that depart from the provided recommendation as these may give
incorrect answers and lose grades.

You will need to modify the THINK() function in the agent to use your A* path-finding. In
THINK() you will need to solve A* for your World state to find a path towards the one
SURVIVOR grid location.

Evaluation

The files provided for assignment include 2 example world files for each of the three versions.
For version 1 and 2 (“HIDDEN_MOVE_COSTS”: false). For version 3 (“HIDDEN_MOVE_COSTS”:
true).

https://en.wikipedia.org/wiki/A*_search_algorithm

 You are free to make, and share in discord, other example worlds you make using AEGIS to test
your system.

For grading the instructional staff will have 5 world files for each of the versions that will be
used to assess students submitted code.

Additional Specification

• Put your name, date, course, semester, and tutorial into the comments of the main.py of your
modified agent_path.

• You must comment your code, provide citations for the source of algorithmic designs, and cite
any GenAI code suggestion usage.

• Do not rename or modify the provided common files.
• You should not have any other .py files for assignment 1.
• You should not import ANY non provided libraries to complete the A* algorithm. Using such

could result in grade of 0 for that portion of assignment. (You are allowed to use heapq and
math). Failure to follow this restriction will result in 0 grade.

• Do not change provided code without discussion with instructor. If there is a bug, or something
is broken, the instructor should be informed to fix this issue.

Grading
The total grade is out of 20.

Version 1
 5 test maps (success if minimum path is achieved -> least move actions)
Version 2
 5 test maps (success if minimum move cost path is achieved)
Version 3

5 test maps (success if minimum move cost path is achieved with challenge of having to re-plan
when move costs are revealed as agents MOVE)

Style/Commenting (out of 5)
Name/Date/Course/Semester/Tutorial, don’t change files, etc.

Bonus
 Variant of version 3 test maps. Your agent needs to be able to notice that it can’t reach
destination without charging once. If your agent first pathfinds first in this situation to the closest
charging grid to its destination that it can reach without running out of energy, and then second to its
destination after having charged enough energy to finish the trip (in our test map) you will get a bonus
credit of 1 grade point.

Submit the following using the Assignment 1 Dropbox in D2L

1. main.py
a. Just submit this one file for grading

