
Tutorial 1: Drawing with the SimpleGraphics

Library

1 Introduction

The SimpleGraphics library is a custom Python library designed to make
graphics in Python as simple as possible while providing the flexibility nec-
essary to create a variety of different applications. With this library it is
possible to generate graphical output using as little as two lines of code.

The remainder of this document explores the use of the SimpleGraphics
library for basic graphical output. Later tutorials will describe how the
SimpleGraphics library can be used to manipulate images and read key-
board and mouse input.

2 Getting Started

You must download the SimpleGraphics library before you can use it in
your programs. Save SimpleGraphics.py in the same folder as the program
you are creating.

Your program must import the SimpleGraphics library before using it.
Adding the following line of code to the top of your file will import all of
the functions stored in the library, allowing you to call them directly.

from SimpleGraphics import *

Running a program containing only this line of code will open a blank
window. Additional lines of code are necessary to add lines, shapes and
text to it. Click on the close button or press the Esc key to terminate your
program.

2.1 Graphics Basics

The window opened when the SimpleGraphics library is imported is 800
pixels wide and 600 pixels tall. Both an x value and a y value are needed to

1

identify a specific pixel within the window. Some shapes only require one
position while others require multiple coordinates. In addition, some shapes
like rectangles and ellipses require a width and a height in addition to a
location.

In the computer graphics coordinate system (0, 0) is located in the up-
per left corner of the window. Values on the x-axis increase from left to
right while values on the y-axis increase from top to bottom. You may
initially find this coordinate system counterintuitive because the y-axis is
flipped compared to the Cartesian coordinate system that is widely used in
mathematics.

2.2 Drawing Your First Primitive

The SimpleGraphics library allows you to draw a variety of different shapes
which are referred to as graphics primitives, or simply primitives. These
include lines, rectangles, ellipses, polygons and curves, among others. A
complete list of the supported primitives can be found later in this tutorial.

Primitives are drawn by calling functions. For example, a line segment
can be drawn by calling the line function and providing the two end points
of the segment. The first two parameters are the x and y positions of one
end of the line while the last two parameters are the x and y positions of the
other end of the line. A diagonal line can be drawn extending your program
so that it consists of the following two lines of code:

from SimpleGraphics import *

line(100, 100, 700, 500)

Running this program will generate the following output:

2

2.3 Adding Rectangles

A rectangle can be added to your application by calling the rect function.
It requires four parameters. The first two parameters specify the x and y
coordinates of its upper left corner. The remaining two parameters are the
rectangle’s width and height respectively. Adding the following line of code
to your program will draw a rectangle below the diagonal line.

rect(100, 400, 200, 100)

A square can be drawn above the diagonal line by adding the following
line of code:

rect(600, 100, 100, 100)

2.4 Additional Primitives

The SimpleGraphics library supports 9 primitives which are shown in the
following image.

3

The code necessary to generate each of these primitives is described in
the following subsections.

2.4.1 Line

The line function requires a minimum of four parameters. The first two
parameters represent the x and y coordinates of one end point of the line
segment while the last two parameters represent the coordinates of the other
end of the line segment. Multiple line segments can be drawn with a single
function call by including addition parameters when calling the line func-
tion. The number of parameters must always be even, with each pair of
parameters representing the x and y coordinate of a point in the window.
Line segments are drawn to connecting the first point to the second point,
the second point to the third point, and so on.

The following lines of code draw the line segments in the image shown
previously:

line(150, 300, 200, 350)

line(100, 350, 100, 250, 200, 250, 200, 300)

2.4.2 Curve

The curve function is closely related to the line function described in the
previous section. It takes several points as its parameters and then draws
a curve that connects the first point to the last point. The curve is pulled
toward the other points but does not typically pass directly through them,
allowing a smooth shape to be maintained. The code used to draw the curve
shown in the previous image follows:

curve(600, 75, 600, 50, 700, 50, 700, 75, \

600, 100, 600, 150, 700, 150, 700, 100)

4

2.4.3 Rectangle

Rectangles are drawn by calling the rect function. It requires 4 parameters.
The first two parameters represent the upper left corner of the rectangle
while the remaining two parameters are its width and height respectively.
If the width and height are the same then a square is drawn. The following
line of code draws the rectangle shown in previous image:

rect(300, 50, 200, 100)

2.4.4 Ellipse

Like the rect function, the ellipse function also takes 4 parameters. Its
first two parameters specify the upper left corner of the bounding box for
the ellipse while the last two parameters are the width and height of the
bounding box respectively. If the width and height of the bounding box are
the same then a circle is drawn. The following line of code draws the ellipse
shown in the previous image:

ellipse(100, 50, 100, 100)

2.4.5 Polygon

The polygon function can be used to draw irregularly shaped objects. Its
parameters represent a collection of points that describe the perimiter of
the polygon in the order x1, y1, x2, y2, ... xn, yn. Each point is connected
to its two neighbours by a line segment, and the enclosed area is filled.
The number of parameters provided to the polygon function must always
be even. The polygon shown in the previous image can be drawn using the
following line of code:

polygon(300, 450, 350, 450, 500, 500, 500, 550, 450, 550, 300, 500)

2.4.6 Blob

The blob function is used to construct an arbitrary shape with curved edges.
Like a polygon, it’s parameters represent a collection of points that describe
the perimeter of the shape. However, the blob may not actually touch the
points in question. Instead, the points provided are used to influence the
blob’s shape while maintaining a curved edge. Repeating a point in the
blob’s point list will ensure that the edge of the blob passes through that
point. However, this typically results in a sharp point on the edge of the

5

blob. The following line of code was used to draw the blob in the previous
image:

blob(600, 350, 600, 300, 700, 300, 700, 250, 650, 250, 650, 350)

2.4.7 Arc

The arc function requires six parameters. The first four parameters describe
the bounding box for an ellipse, a portion of which will be drawn to form an
arc, the same way the bounding box is specified for the ellipse function.
The final two parameters specify the starting angle of the arc and its extent
in degrees. The starting angle is specified with 0 degrees representing the 3
o’clock position on a clock face. The extent of the arc specifies the number
of degrees counter clockwise over which the arc will be drawn. For example,
the three quarters circle show in the previous figure can be drawn with the
following command:

arc(100, 450, 100, 100, 0, 270)

2.4.8 Pie Slice

A pie slice can be drawn by calling the pieSlice function. It takes the same
parameters as the arc function described in the previous section. When the
pie slice is drawn, two line segments are drawn in addition to the arc. These
lines segments connect the ends of the arc to the center of the circle and the
enclosed region is filled. The pie slice shown in the previous figure can be
drawn with the following function call:

pieSlice(600, 450, 100, 100, 60, 60)

2.4.9 Text

Text can be added to your image by calling the text function. The text
function takes a minimum of three parameters which are the x and y coor-
diantes of the text, followed by the message that will be displayed.

A variety of fonts can be used for the displayed text. To use a font
other than the default, call the setFont function. It’s first parameter is the
name of the font that you would like to use such as Times or Arial. The
second parameter, which is optional, is the size of the font. If no size is
specified then the font size defaults to 10. The final parameter is a string
describing any modifications that should be performed to the font. Available
modifications include "bold", "italic" and "bold italic".

6

The “Hello World!” message shown in the previous figure was drawn
using the following lines of code:

setFont("Times", "24", "bold")

text(400, 300, "Hello World!")

By default, the text is centered on the specified location. However, this
behaviour can be undesirable when you are trying to line up several lines
of text of different lengths. As a result, a optional fourth parameter can
be included which specifies where the coordinate is within the text. The
supported values are the abbreviations "n", "e", "s" and "w" for north,
east, south and west. For example, if the fourth parameter to text is "w"

then the anchor point is on the west (left) edge of the text, and all of the
text will appear to the right of the x coordinate that was provided as the
first parameter. The anchor point can be placed in the corner by using two
directions including "ne", "se", "nw" and "sw".

2.5 Working with Color

All of the primitives that we have drawn so far can be drawn using a wide
variety of colors. Filled shapes such as polygons, rectangles and blobs make
use of both an outline color and a fill color. Unfilled shapes such as lines,
curves and text make use of only the outline color.

alice blue

antique white

aquamarine

aquamarine1

aquamarine2

aquamarine3

aquamarine4

azure

azure1

azure2

azure3

azure4

beige

bisque

bisque1

bisque2

bisque3

bisque4

black

blanched almond

blue

blue violet

blue1

blue2

blue3

blue4

brown

brown1

brown2

brown3

brown4

burlywood

burlywood1

burlywood2

burlywood3

burlywood4

cadet blue

chartreuse

chartreuse1

chartreuse2

chartreuse3

chartreuse4

chocolate

chocolate1

chocolate2

chocolate3

chocolate4

coral

coral1

coral2

coral3

coral4

cornflower blue

cornsilk

cornsilk1

cornsilk2

cornsilk3

cornsilk4

cyan

cyan1

cyan2

cyan3

cyan4

dark blue

dark cyan

dark goldenrod

dark gray

dark green

dark khaki

dark magenta

dark olive green

dark orange

dark orchid

dark red

dark salmon

dark sea green

dark slate blue

dark slate gray

dark turquoise

dark violet

deep pink

deep sky blue

dim gray

dodger blue

firebrick

firebrick1

firebrick2

firebrick3

firebrick4

floral white

forest green

gainsboro

ghost white

gold

gold1

gold2

gold3

gold4

goldenrod

goldenrod1

goldenrod2

goldenrod3

goldenrod4

green

green yellow

green1

green2

green3

green4

honeydew

honeydew1

honeydew2

honeydew3

honeydew4

hot pink

indian red

ivory

ivory1

ivory2

ivory3

ivory4

khaki

khaki1

khaki2

khaki3

khaki4

lavender

lavender blush

lawn green

lemon chiffon

light blue

light coral

light cyan

light goldenrod

light goldenrod yellow

light gray

light green

light pink

light salmon

light sea green

light sky blue

light slate blue

light slate gray

light steel blue

7

Colors can either be specified by their name or by a combination of pri-
mary colors. The simple graphics library understands the names of several
hundred colors, some of which are listed in this document.

While the listed colors cover a wide variety of possibilities, they may not
include the exact color that you need. As a result, it is also possible to form
a color by mixing various amounts of red, green and blue. The amount of
each color is specified on a scale from 0 (no contribution) to 255 (maximum
contribution). All of the color functions provided by the SimpleGraphics

library support both methods for entering a color.
Call the setOutline function to change the outline color used when

drawing shapes. If only one parameter is specified then the parameter should
be a string containing the name of a color. If three parameters are provided
then each parameter should be a numeric value between 0 and 255. In
the 3 parameter form the first parameter is the amount of red, the second
parameter is the amount of green and the third parameter is the amount of
blue.

light yellow

lime green

linen

magenta

magenta1

magenta2

magenta3

magenta4

maroon

maroon1

maroon2

maroon3

maroon4

medium aquamarine

medium blue

medium orchid

medium purple

medium sea green

medium slate blue

medium spring green

medium turquoise

medium violet red

midnight blue

mint cream

misty rose

moccasin

navajo white

navy

navy blue

old lace

olive drab

orange

orange red

orange1

orange2

orange3

orange4

orchid

orchid1

orchid2

orchid3

orchid4

pale goldenrod

pale green

pale turquoise

pale violet red

papaya whip

peach puff

peru

pink

pink1

pink2

pink3

pink4

plum

plum1

plum2

plum3

plum4

powder blue

purple

purple1

purple2

purple3

purple4

red

red1

red2

red3

red4

rosy brown

royal blue

saddle brown

salmon

salmon1

salmon2

salmon3

salmon4

sandy brown

sea green

seashell

seashell1

seashell2

seashell3

seashell4

sienna

sienna1

sienna2

sienna3

sienna4

sky blue

slate blue

slate gray

snow

snow1

snow2

snow3

snow4

spring green

steel blue

tan

tan1

tan2

tan3

tan4

thistle

thistle1

thistle2

thistle3

thistle4

tomato

tomato1

tomato2

tomato3

tomato4

turquoise

turquoise1

turquoise2

turquoise3

turquoise4

violet

violet red

wheat

wheat1

wheat2

wheat3

wheat4

white

white smoke

yellow

yellow green

yellow1

yellow2

yellow3

yellow4

The fill color can be changed by calling the setFill function. It accepts
parameters in the same form as the setOutline function. If you want to
change both the fill color and the outline color to the same color then you
can call the setColor function. The background color for the window can
be changed by calling the background function. It also takes a color as its

8

parameter or parameters. The following program demonstrates the use of
color by changing the background color of the window and drawing three
primitives.

from SimpleGraphics import *

Change the background to sky blue
background("deep sky blue")

Draw a square using named colors
setOutline("seashell4")

setFill("yellow")

rect(100, 100, 100, 100)

Draw a blob using colors specified by their red, green and blue values
setOutline(255, 255, 255)

setFill(255, 192, 192)

blob(300, 100, 500, 100, 425, 200, 375, 200)

Draw an ellipse using the same color for the outline and fill
setColor("royal blue")

ellipse(600, 100, 100, 100)

9

