Secure Shell (SSH)

+ idea is to run commands on another computer

« use a keyboard and monitor you can hold to control another machine
« e.g., server machines, headless machines, routers, remote machines

« original designs had no security
« plaintext transmission

+ designed in 1969, formalized in 1970
« defines a protocol for two machines to communicate

« typically uses tcp/23

« sends keystrokes from client to server

« sends printed characters from server to client
« includes telnet control information

« interrupt process, abort output, etc.

« designed in 1982

« suite of remote access commands
« rlogin: remote login
« rcp: remote copy
« rexec: remote excute

Both Telnet and rlogin had no security

Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext

Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext
Then in 1995 Tatu Ylonen witnessed a
password-sniffing attack in his university network

Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext
Then in 1995 Tatu Ylonen witnessed a
password-sniffing attack in his university network
i.e., eavesdropper who gathered login
and passwords by looking at the traffic.

Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext
Then in 1995 Tatu Ylonen witnessed a
password-sniffing attack in his university network
i.e., eavesdropper who gathered login
and passwords by looking at the traffic.

So he read about cryptography and invented ssh.

« secure shell
« widely used popular tool
« allows remote login

« run commands on other computer
« does it securely

= supports secure authentication
« password, public key

« supports X forwarding for graphics

« other programs can build on the secure channel
+ e.g., sshfs, git over ssh, scp, socket proxy

10

while both offer strong security guarantees they are quite different
TLS concerns only transport
= application layer implemented by the program separately
SSH has authentication protocols for login
= password based
« signature based
SSH has connection protocols
« implementing remote access
« X forwarding
« port forwarding

11

« client contacts server (“host”)
« provides SSH protocol version and implementation version
« server replies
« its public RSA “host-key” (1024 bits)
« this is permanent, stored in a config file
« random RSA “server-key” (768 bits)

« changed hourly
« never saved to a file

« eight random bytes
« list of supported ciphers

12

« both client and server compute session identifier
« md5 hash of host key, server key, and random bytes
« client checks a local cache of host keys
« if host is not in the cache, show the key to user and ask to add
= connection may abort here

« else if the host is in the cache and the host key matches all good
« else warn the user that the key has changed

= connection may abort here
« client randomly generates a session key

« based on supported ciphers offered by server
= encrypts with server key and host key

« why doubly encrypt?
« sends to the server

« client and server now have a secure channel

13

Lidudadidididudidodidud idigudid idigididididididididdudigidud idigdid id id b ididid i id i ududldd il udidiud LdLd La i L ud L

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

el delduaduadduelddddududeuaduddueduadueddeduddddedauduelud

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man—-in—the-middle attack)!
It is also possible that a host key has just been changed.

» client now has to authenticate to the server
« supports Kerberos, password, public key
« best practice is public key
« Kerberos
= user gets a ticket to login to system
« ssh server is just like a printer or other service
» password authentication

« client types their password into the terminal
= sends to server over encrypted channel
= server checks that it is the password for that user on this machine

15

« public key authentication
« client sends server the public key they want to use
« server checks if that key is authorized for that user

« /home/user/.ssh/authorized_keys
« if not listed in that file, reject

server challenges client

= server generates a random 256-bit string
= encrypts with client’s public key and sends it

« client answers challenge

« client decrypts it with private key
« combines the challenge with session identifier
» hashes the result with MD5 and sends it

« what purposes are served by adding the session identifier?
+ what are two things that can go wrong?

16

17

Why is public key more secure than password based?

18

How is the client’s public key stored?

jreardon@ jetblackbitey:™% ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/ jreardon/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/ jreardon/.ssh/id_rsa

Your public key has been saved in /home/ jreardon/.ssh/id_rsa.pub

The key fingerprint is:

SHAZ256 :aZ2F 8 jldpq/rHILYql70zXxplXRKMF txzP6uqalgJelE jreardon@jetblackbitey
The key's randomart image is:

+———[RSA 3072]1-——+

| S
| o ..ol
| .o = .|
| . ¥ 0. o ol
| .S o =to.l
| L |
| E # oo |
| o 0 +=0 |
| S.¥==+o.0. |
+-———[SHA256]1-——-- +

jreardon@ jetblackbitey:"$ |

jreardon@ jetblackbitey:™% cat .ssh/id_rsa.pub

ssh-rsa AAAAB3NzaClyc2EARRADARABAAABgACgL MubZh jialQKkrdabOEHfuRYbY43R1ycu jE
Yg09CryZrNoEMOTfx2RZ5e3EuKZi33rrnCOmrQgX0FgnfboYZtiTPqqrIL04yCNKmyYs+HsZ1X
Q2wI7F9SvuPLzd7 /T 25D027d0eF0cRkM/erbh+k¥g4ScmCKxi jU7oqpHxSLIPZshmDupS8u+0U
nHd1N8a/wI312yk8k T2aDfCKu/0GPOBZc0iqq2hix1u720xYIhd4pJ6JqdmC8i/JaledP3holecr
z/RShlxhJ7G0e1iE6LYH+5YSP jZN4k10vUYTIhCqRfbhe¥Ggqe7RANDpr0gex1GNSCZzTIxvXQ/ti
KaWtULdx5MKSncEiBF TrzPpQE4AHAgs0xHvpzfim / 7vpUKg9bvSmhRHSLCob1MBAdA2qAKY JdvI
1D2NCIo0l/BsDCSv /c8rJAd8XHAhqtmIPBKrYwF 1bHdiYuUMYS7bhk +wep /+PEpPKmaF H6pe+PH
i0HsTKGXwQIOMNfYJIC1Y70HYovo06p54Bs= jreardon@ jetblackbitey

jreardon@ jetblackbitey:"% |

jreardon@ jetblackbitey:"% cat .ssh/id_rsa

————— BEGIN OPENSSH PRIVATE KEY-———-

b3B1bnNzaClrZXktd jEARARABGSvbmUARAAELMIUZQARRRAAARABAARABlwARARd zc2gtcn
NhAAAAAWEARQARAYEAOC zL jGYYdmk CpK3MmIBB 37k YN20NOZcnl oxGINPQg8mazaBDDn38
dkMeXtxLimYt9665u jpq0IF9BYJI3266G6bYk z6qqyC90Mg jSpslbPh7GdYONsPexfUr7 jy8
3e/038+Q9u3dHhTREZDP3q24fpFY0EnJgisYol06KqYsUiyT2bIZg7qUvl v j1JzHdTTGv8
PdyNspPJEImg3wirvzh jzghlXDogqtegZbu9 jsCIeKSeianZgvIvylkHnT94aGXnK8/0Uo
Zc¥Sex jntYh0i2B/ulE j42TeJJTr1GCIAqkX24X1Rgnu0ADA6azqoMZR jeQmeyMb1 OP7Y i
mlr¥YC3ce¥ikp3BIuhU68z6UBOABOILDsSR76cwlv+76YCoPN7+Z0UY¥kiwgGITPEHANgg JGC
XbyJQ9 jQiKIfwbAwkr /3PKyUHfFlglarZiTwSq2MBZNx3YmL LDFUu24ZPsHKT / jxKTypmh

tc@localhost's password:
'Y
/3 TC (v Core is distributed with ABSOLUTELY NO WARRANTY.

(/—_——_-\ www . tinycorelinux.net

tcBbox:"% vi .ssh™C
tcBbox:"% mkdir .ssh
tcBbox:"% vi .ssh/authorized_keys

joel.reardonBlinux08-wc:™% ssh tcBlocalhost —p 13898
Enter passphrase for key '/home/profs/joel.reardon/.ssh/id_rsa': |J

+ S5H Protocol
~ S5SH Version 2
Packet Length: 972
Padding Length: 1@
~ Key Exchange
Message Code: Key Exchange Init (20)
Algorith

Cookie: eeBdc35a4575483ce39d4945d5b62124
kex_algorithms length: 158
kex_algorithms string: curve25519-sha256@1ibssh.org, ecdh-sha2-nistp256, ecdh-sha2-nistp384,..
server_host_key_algorithms length: 65
server_host_key_algorithms string: ssh-rsa,rsa-sha2-512,rsa-sha2-256, ecdsa-sha2-nistp256, s..
encryption_algorithms_client_to_server length: 108
encryption_algorithms_client_to_server string: chacha2@-polyl3@5@openssh.com,aesi28-ctr,ae..
encryption_algorithms_server_to_client length: 108
encryption_algorithms_server_to_client string: chacha2@-polyl3@5@openssh.com,aesi28-ctr,ae..
mac_algorithms _client to server length: 213
mac_algorithms_client_to_server string [truncated]: umac-64-etm@openssh.com,umac-128-etm@o..
mac_algorithms_server_to_client length: 213
mac_algorithms_server_to_client string [truncated]: umac-64-etm@openssh.com,umac-128-etm@o..
compression_algorithms_client_to_server length: 21
compression_algorithms_client_to_server string: none,zlib@openssh.com
compression_algorithms_server_to_client length: 21

~ S55H Protocol
- 55H Version 2 (encryption:aes256-gcm@openssh.com compression:none)
Packet Length: 44
Padding Length: &
~ Key Exchange (method:curve25519-sha256@1ibssh.org)

dl U
000000E00EE0
Sequence number: 1

[Direction: client-to-server]

« complete rewrite of SSH

separate out the connection, transport, and authentication

« support for better cryptographic primitives

26

SSH-1 did not support AES

replaces server key with Diffie-Hellman key negotiation
adds support for using certificates

uses HMAC for message integrity

« SSH-1 did not have real integrity
allows support for rekeying

» idea was adversary with more ciphertext may be easier to break
different keys for direction and integrity

drops Kerberos
public key challenge is changed

« client signs session identifier along with other connection information

27

« SSH's key difference with TLS
= the client is always authenticated

« makes ssh useful for accessing resources that are otherwise
protected

= e.g., git uses ssh to access a repository

= now you don't have to send a username and password to pull and push
code

= or save a working copy of your password in memory or on disk

= private key is stored on disk, but passphrase protected

« random number generator in Debian's openss| was predictable

« all client keys for public key authentication were from a small domain
« possible to brute force generate them all
« log into any system that accepted a weak key

« issue was that key generate used uninitialized memory as
randomness

» not a good source of randomness

28

Hi,

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated in the random number generator. It's adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
pieces of code in crypto/rand/md_rand.c:

247:
MD_Update(&m, buf,j);

467:
#ifndef PURIFY

MD_Update(&m, buf,j); /* purify complains */
#endif

What I currently see as hest option is to actually comment out
those 2 lines of code. But I have no idea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I'm not even
sure how much entropy some unitialised data has.

wWhat do you people think about removing those 2 lines of code?

