
Secure Shell (SSH)

1



Remote Access

idea is to run commands on another computer
use a keyboard and monitor you can hold to control another machine
e.g., server machines, headless machines, routers, remote machines

original designs had no security
plaintext transmission

2



Telnet

designed in 1969, formalized in 1970
defines a protocol for two machines to communicate

typically uses tcp/23
sends keystrokes from client to server
sends printed characters from server to client
includes telnet control information

interrupt process, abort output, etc.

3



r-commands

designed in 1982
suite of remote access commands

rlogin: remote login
rcp: remote copy
rexec: remote excute

4



Both Telnet and rlogin had no security

5



Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext

6



Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext

Then in 1995 Tatu Ylönen witnessed a
password-sniffing attack in his university network

7



Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext

Then in 1995 Tatu Ylönen witnessed a
password-sniffing attack in his university network

i.e., eavesdropper who gathered login
and passwords by looking at the traffic.

8



Both Telnet and rlogin had no security
Usernames and passwords were sent plaintext

Then in 1995 Tatu Ylönen witnessed a
password-sniffing attack in his university network

i.e., eavesdropper who gathered login
and passwords by looking at the traffic.

So he read about cryptography and invented ssh.

9



SSH

secure shell
widely used popular tool

allows remote login
run commands on other computer
does it securely

supports secure authentication
password, public key

supports X forwarding for graphics
other programs can build on the secure channel

e.g., sshfs, git over ssh, scp, socket proxy

10



SSH and TLS

while both offer strong security guarantees they are quite different
TLS concerns only transport

application layer implemented by the program separately

SSH has authentication protocols for login
password based
signature based

SSH has connection protocols
implementing remote access
X forwarding
port forwarding

11



SSH-1: login sequence

client contacts server (“host”)
provides SSH protocol version and implementation version

server replies
its public RSA “host-key” (1024 bits)

this is permanent, stored in a config file

random RSA “server-key” (768 bits)

changed hourly
never saved to a file

eight random bytes
list of supported ciphers

12



SSH-1: login sequence (con’t)

both client and server compute session identifier
md5 hash of host key, server key, and random bytes

client checks a local cache of host keys
if host is not in the cache, show the key to user and ask to add

connection may abort here

else if the host is in the cache and the host key matches all good
else warn the user that the key has changed

connection may abort here

client randomly generates a session key
based on supported ciphers offered by server
encrypts with server key and host key

why doubly encrypt?

sends to the server

client and server now have a secure channel

13





SSH-1: login sequence (con’t)

client now has to authenticate to the server
supports Kerberos, password, public key
best practice is public key

Kerberos
user gets a ticket to login to system
ssh server is just like a printer or other service

password authentication
client types their password into the terminal
sends to server over encrypted channel
server checks that it is the password for that user on this machine

15



SSH-1: login sequence (con’t)

public key authentication
client sends server the public key they want to use
server checks if that key is authorized for that user

/home/user/.ssh/authorized keys
if not listed in that file, reject

server challenges client

server generates a random 256-bit string
encrypts with client’s public key and sends it

client answers challenge

client decrypts it with private key
combines the challenge with session identifier
hashes the result with MD5 and sends it

what purposes are served by adding the session identifier?

what are two things that can go wrong?

16



Why is public key more secure than password based?

17



How is the client’s public key stored?

18

















SSH-2

complete rewrite of SSH
separate out the connection, transport, and authentication

support for better cryptographic primitives
SSH-1 did not support AES
replaces server key with Diffie-Hellman key negotiation
adds support for using certificates
uses HMAC for message integrity

SSH-1 did not have real integrity

allows support for rekeying

idea was adversary with more ciphertext may be easier to break

different keys for direction and integrity
drops Kerberos
public key challenge is changed

client signs session identifier along with other connection information

26



Client Authentication

SSH’s key difference with TLS
the client is always authenticated

makes ssh useful for accessing resources that are otherwise
protected

e.g., git uses ssh to access a repository
now you don’t have to send a username and password to pull and push
code
or save a working copy of your password in memory or on disk
private key is stored on disk, but passphrase protected

27



CVE-2008-0166

random number generator in Debian’s openssl was predictable
all client keys for public key authentication were from a small domain
possible to brute force generate them all
log into any system that accepted a weak key

issue was that key generate used uninitialized memory as
randomness

not a good source of randomness

28






