ARP Spoofing

		TCP	TCP data
		header	TCI data
	IP		IP data
	header		II data
frame		£	1.4.

header

frame data

application data

frame Link Layer

footer

Transport Layer IP Layer

Application Layer

MAC Address

- every device that connects to a network has a network interface
 - these have identifiers called MAC address
 - Media Access Control
 - 6 octets
 - written in hex
 - separated by colons
 - e.g., 00:0c:29:91:d0:93

MAC Address

- often used (unfortunately) to authenticate on a network
 only a particular MAC address can use a particular ethernet wall jack
- MAC address are assigned at the factory but can be changed
- change is through software, so the network driver uses a new one

GNU MAC Changer

GNU MAC Changer is an utility that makes the maniputation of MAC addresses of network interfaces easier.

- Web site: http://www.gnu.org/software/macchanger
- Repository: http://github.com/alobbs/macchanger

All the best,
Alvaro Lopez Ortega <alvaro@alobbs.com>

```
mc_net_info_set_mac (net_info_t *net, const mac_t *mac)
        int i;
        for (i=0; i<6; i++) {
                net->dev.ifr hwaddr.sa data[i] = mac->byte[i];
        if (ioctl(net->sock, SIOCSIFHWADDR, &net->dev) < 0) {</pre>
                perror ("[ERROR] Could not change MAC: interface up or insufficient permissions");
        return 0;
```

The MAC address is self reported in the packet.

Not reliable identification / authentication

,

;

The MAC address is self reported in the packet. Not reliable identification / authentication Yet it is widely used. The MAC address is self reported in the packet. Not reliable identification / authentication

Even here, today, with non-trivial cost.

Yet it is widely used.

Link Layer

- individual units that are sent are data frames
- these frames are sent to MAC address
 - not IP addresses!
- IP addresses are resolved to MAC addresses

```
▶ Frame 92: 1026 bytes on wire (8208 bits), 1026 bytes captured (8208 bits)
▼ Ethernet II, Src: Dell_c0:56:f0 (00:21:70:c0:56:f0), Dst: HewlettP_bf:91:ee (00:25:b3:bf:91:ee)
▶ Destination: HewlettP_bf:91:ee (00:25:b3:bf:91:ee)
```

Source: Dell_c0:56:f0 (00:21:70:c0:56:f0)
Type: IPv4 (0x0800)
Internet Protocol Version 4 Src: 172 16 0 107 Det: 74 125 95 147

▶ Internet Protocol Version 4, Src: 172.16.0.107, Dst: 74.125.95.147 ▶ Transmission Control Protocol, Src Port: 45692, Dst Port: 80, Seq: 3641, Ack: 2548, Len: 960 ▶ Hypertext Transfer Protocol

5f 93 b2 7c 00 50 24 e6 72 66 a7 bf c4 dd 80 18 ..|.P\$. rf..... 00 b4 5a 72 00 00 01 01 08 0a 00 08 fb 8c bf 8b ..zr.... 0040 91 1d 47 45 54 20 2f 63 6f 6d 70 6c 65 74 65 2f ..GET /c omplete/ 67 73 65 61 72 63 68 3f 68 6c 3d 65 6e 26 63 6c gsearch? h1=en&cl 69 65 6e 74 3d 68 70 26 65 78 70 49 64 73 3d 31 ient=hp& expIds=1 37 32 35 39 2c 31 38 31 36 38 2c 32 34 34 38 33 7259,181 68,24483 32 35 32 33 33 2c 32 34 36 30 2c 32 35 34 ,25233,2 5460,254

ARP protocol

- ARP is address resolution protocol
- used to translate IPs to MAC addresses
- based on broadcast over network

ARP protocol

- Someone says: "I have IP 10.0.0.123 and MAC 00:0c:29:91:d0:93. Who has IP 10.0.0.12?"
- The machine with IP 10.0.0.12 replies: "Tell 00:0c:29:91:d0:93 that 10.0.0.12 is 00:0c:29:91:34:23"
- machines that hear this cache the result
 - i.e., set $10.0.0.12 \rightarrow 00:0c:29:91:34:23$
 - any ARP they see they update
 - idea was to save network bandwidth in the pre-switch era

No.	. Time	Sc	ource	Destination	Protocc≠ Ler	ngth Info
	991 12.82	5528 Ir		Broadcast	ARP	42 Who has 192.168.0.101? Tell 192.168.0.103
	992 12.828	8469 Sa	amsungE_33:4c:a0	IntelCor_8b:5b:b4	ARP	42 192.168.0.101 is at 84:2e:27:33:4c:a0
	1817 19.563			Broadcast	ARP	42 Who has 192.168.0.102? Tell 192.168.0.103
	1818 20 559	9469 Tr	ntelCor 8h·5h·h4	Rrnadcast	ΔRP	42 Who has 192 168 A 1822 Tell 192 168 A 183
•	Frame 991: 4	42 bytes or	n wire (336 bits), 4	2 bytes captured (336 bits)		
•	Ethernet II,	, Src: Inte	elCor_8b:5b:b4 (60:5	7:18:8b:5b:b4), Dst: Broadcast (ff:ff:ff:ff:	ff:ff)	
•	Address Reso	olution Pro	otocol (request)			
		type: Ethe				
	Protocol	type: IPv4	1 (0x0800)			
	Hardware size: 6					

Protocol size: 4

Opcode: request (1) Sender PAG address: 192.168.0.169 Sender IP address: 192.168.0.169 Target PAG address: 00:00:00 00:00:00 (00:00:00:00:00:00) Target IP address: 192.168.0.161

No.	Time	Source	Destination	Protocc▼	Length Info		
991	12.825528	IntelCor_8b:5b:b4	Broadcast	ARP	42 Who has 192.168.0.101? Tell 192.168.0.103		
	12.828469	SamsungE_33:4c:a0	IntelCor_8b:5b:b4	ARP	42 192.168.0.101 is at 84:2e:27:33:4c:a0		
1817	19.561122	IntelCor_8b:5b:b4	Broadcast	ARP	42 Who has 192.168.0.102? Tell 192.168.0.103		
1818	20 559469	IntelCor 8h·5h·h4	Rrnadcast	ΔRD	42 Who has 192 168 A 1A22 Tell 192 168 A 1A3		
Frame 992: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)							
	thernet II, Srć: SamsungE_33:4c:a0 (84:2e:27:33:4c:a0), Dst: IntelĆor_8b:5b:b4 (60:57:18:8b:5b:b4)						
Addres	Address Resolution Protocol (reply)						
	Hardware type: Ethernet (1)						
Pro	Protocol type: IPv4 (0x0800)						
Han	dware size: 6						
Pro	Protocol size: 4						

Protocol \$126: 4 Opcode: reply (2): Sender MAC address: SamsungE_33:4c:a0 (84:2e:27:33:4c:a0) Sender IP address: 192.168.0.161 Target MAC address: IntelCor_8b:5b:b4 (60:57:18:8b:5b:b4) Target IP address: 192.168.0.163

ARP protocol

- ARP has no authentication
- anyone can create ARP messages
- there is no guarantee that the MAC address for the IP is correct
- ARP messages can be created spuriously
- this enables MitM
 - e.g., by ARP poisoning the gateway (10.0.0.1)

MitM on ARP

- Eve sends ARP reply to Alice to map Bob's IP to Eve's MAC
- Eve sends ARP reply to Bob to map Alice's IP to Eve's MAC
- Alice now sends all Bob-bound messages to Eve
- Bob now sends all Alice-bound messages to Eve
 - Eve is now on-path
 - Eve can forward traffic, monitor traffic, modify traffic

DoS on ARP

- DoS (denial of service)
- Eve sends bad ARP replies to machines, mapping IP addresses to non-existent MACs
- no traffic is getting through

ARP Spoofing requires local access (e.g., LAN)

ARP Spoofing requires local access (e.g., LAN)
This means that it works for shared Wi-Fi, public Wi-Fi

ARP Spoofing requires local access (e.g., LAN)
This means that it works for shared Wi-Fi, public Wi-Fi
Once on path, easy to mount other attacks
(e.g., TLS stripping)

How to deal with ARP Attacks

- only let in trusted users to a network
- detect multiple occurances of the same MAC address on a LAN
- statically define the ARP table