
Public Key Crypto

1

Public Key Crypto

Alice has a private secret key K and a public key PK

Alice gives everyone PK

to encrypt M , compute C = EPK (M)

to decrypt C , compute M = DK (C)

only Alice has K , so only Alice can compute DK

E and D are related, K and PK are related

we assume that knowing E, D, PK, and lots of Cs and Ms does
not reveal K

2

Public Key Signature

Alice has a private secret key K and a public key PK

Alice gives everyone PK

to sign M , compute S = EK (H(M))

to verify S is a signature for M , anyone can check if
H(M) = DPK (S)

only Alice has K , so only Alice can compute signatures

3

Public Key Signatures

somewhat like a real-world signature
only I can create the signature

exception
private keys can be stolen / copied
may not know it is compromised
signing things you do not agree with

4

Public key crypto is slow.
So usually we use it only to exchange
encryption keys used for block ciphers

like AES, and to sign hashes of messages.

5

Two kinds of secret keys:
session keys and long-term keys.

6

Two kinds of secret keys:
session keys and long-term keys.

Session keys are used for a short time

7

Two kinds of secret keys:
session keys and long-term keys.

Session keys are used for a short time
e.g., a random session key is used to encrypt

network traffic when for a single socket
from connect() to close()

8

Two kinds of secret keys:
session keys and long-term keys.

Session keys are used for a short time
e.g., a random session key is used to encrypt

network traffic when for a single socket
from connect() to close()

a different session key is used next time.

9

Two kinds of secret keys:
session keys and long-term keys.

Session keys are used for a short time
e.g., a random session key is used to encrypt

network traffic when for a single socket
from connect() to close()

a different session key is used next time.
e.g., each downloading of same webpage

has a different session key.

10

Long-term keys don’t change, used a long time

11

Long-term keys don’t change, used a long time
used for many sessions.

12

Long-term keys don’t change, used a long time
used for many sessions.

session keys are ephemeral

13

Long-term keys don’t change, used a long time
used for many sessions.

session keys are ephemeral
long-term keys must be managed more carefully

14

If my session key is compromised
attacker can learn what happened in this session

15

If my session key is compromised
attacker can learn what happened in this session

not all previous sessions that happened.

16

Compromising a long-term key may reveal
all previous session keys and allow
for unlimited future impersonation

17

Compromising a long-term key may reveal
all previous session keys and allow
for unlimited future impersonation

compromised session key can only allow
continued impersonation for a session.

18

Perfect Forward Secrecy:
the compromise of a long-term secret does

not impact the secrecy of previous (finished) sessions.

19

Perfect Forward Secrecy:
the compromise of a long-term secret does

not impact the secrecy of previous (finished) sessions.
e.g., by using Diffie-Hellman key exchange.

20

A B

A B

choose x choose y

A B

choose x
gx

choose y

A B

choose x
gx

choose y

gy

compute (g)

A B

choose x
gx

choose y

gy

y
x

x
y

compute (g)

A B

choose x choose y

E

A B

choose x choose y

E

gx

A B

choose x choose y

E

gx

ga

A B

choose x choose y

E

gx

ga

gy

A B

choose x choose y

E

gx

ga

gy

bg

A B

choose x choose y

E

gx

ga

gy

bg

thinks g xb thinks g
ya

both

gxb gya

knows

A B

choose x choose y

E

gx

ga

gy

bg

thinks g xb thinks g
ya

A B

choose x choose y

E

gx and sig(g x)

A B

choose x choose y

E

gx and sig(g x)

gy and sig(g y)

A B

choose x choose y

E

gx and sig(g x)

gy and sig(g y)

check sig check sig

A B

choose x choose y

E

replay attack

A B

choose x choose y

E

somehow

knows

sigA
a(g)

a and

A B

choose x choose y

E

somehow

knows

sigA
a(g)

a and

gx
Asig (g)x

A B

choose x choose y

E

somehow

knows

sigA

g sig

a(g)

a and

a
A(g)

a

gx
Asig (g)x

A B

choose x choose y

E

somehow

knows

sigA

g sig

gy sigB

a(g)

a and

a
A

a(g)

(g)y

gx
Asig (g)x

compute g ya compute g ya

A B

choose x choose y

E

somehow

knows

sigA

g sig

gy sigB

a(g)

a and

a
A

y

a(g)

(g)

gx
Asig (g)x

Kerberos and Mediated Key Exchange

42

Key Distribution Centre (KDC)

a central trusted party

knows all the nodes in the network

has authentic channel with all the nodes

allows for mediated key exchange

what can go wrong?

43

KDC Operation (in principle)

A→ KDC: “I want to talk to Bob”

KDC invents a random key KAB

KDC → A: { use KAB for Bob }KA

KDC → B : { use KAB for Alice }KB

what can go wrong?

44

KDC Operation (in practice)

A→ KDC: “I want to talk to Bob”

KDC invents a random key KAB

KDC → A:
{ use KAB for Bob }KA

{ use KAB for Alice }KB

this is called a ticket

A→ B : “Hi I’m Alice! ticket={ use KAB for Alice }KB
”

what can go wrong?

45

Needham-Schroeder Protocol

goal is key transport on insecure networks
e.g., you print a document at the University of Calgary

use of a trusted third party to mediate keys for people
you don’t need to do key exchange with everyone before communicating

two types
symmetric key

goal: establish a session key between Alice and Bob

public key

goal: provide mutual authentication between Alice and Bob

both protocols insecure as proposed!
because crypto is hard

46

N-S Symmetric

Notation:
(A)lice, (B)ob, (S)erver (trusted by both A and B)
KXY symmetric key known only by X and Y
NX a random nonce generated by X
{data}KXY

data is encrypted with KXY

Protocol:
A→ S : A,B,NA

S → A : {NA,KAB ,B, {KAB ,A}KBS
}KAS

A→ B : {KAB ,A}KBS

B → A : {NB}KAB

A→ B : {NB − 1}KAB

where is the flaw?

47

One fix

amend the first two lines to:
A→ B : A
B → A : {A,N ′

B}KBS

A→ S : {A,B,NA, {A,N ′
B}KBS

}KAS

S → A : {NA,KAB ,B, {KAB ,A,N
′
B}KBS

}KAS

why does this fix the flaw?

48

N-S Public Key

Notation:
A, B, S the same
KPX - public key for X (=A, B, or S)
KX - private key for X (paired with KPX)
{·}PX - encrypted for X
{·}X - signed by X

Protocol:
A→ S : A,B
S → A : {KPB ,B}KS

A→ B : {NA,A}KPB

B → S : B,A
S → B : {KPA,A}KS

B → A : {NA,NB}KPA

A→ B : {NB}KPB

where is the flaw?

49

Mafia fraud

Alice connects to Eve willingly
Eve runs some website (like an illegal downloading site)

Eve then connects to Bob pretending to be Alice

Bob issues “Alice” (really Eve) a challenge to sign

Eve uses that as a challenge for Alice pretending it’s Eve’s website

50

This is also called the chess grandmaster’s problem:
how was a young girl named Anne-Louise

able to defeat a grandmaster in chess?

51

In Mafia fraud Eve is acting as a man-in-the-middle for
authentication, and Anne-Louise as a man-in-the-middle

for the chess grandmasters.
So why is it called Mafia fraud and not MitM?

52

Mafia fraud / grandmaster problem the victim
willingly and knowingly communicates

with the attacker and
unknowingly communicates

with the other victim.

53

Mafia fraud / grandmaster problem the victim
willingly and knowingly communicates

with the attacker and
unknowingly communicates

with the other victim.
MitM involves the victims unknowingly

communicating with the attacker.

54

N-S Mafia Fraud

A→ S : A,E

S → A : {KPE ,E}KS

A→ E : {NA,A}KPE

E → B : {NA,A}KPB

E can decrypt this and so know NA

B → E : {NA,NB}KPA

E cannot decrypt this so does not learn NB

E → A : {NA,NB}KPA

E can just relay it verbatim

A→ E : {NB}KPE

E learns NB by design

E → B : {NB}KPB

success

55

There I fixed it (N-S-Lowe)

Notation:
A, B, S the same
KPX - public key for X (=A, B, or S)
KX - private key for X (paired with KPX)
{·}PX - encrypted for X
{·}X - signed by X

Protocol:
A→ S : A,B
S → A : {KPB ,B}KS

A→ B : {NA,A}KPB

B → S : B,A
S → B : {KPA,A}KS

B → A : {NA,NB , B }KPA

A→ B : {NB}KPB

56

Now for Kerberos, based on symmetric N-S.

57

Many-to-Many Authentication

how to prove identity when requesting services on network
many users, many services (mail, printer, servers, etc.)
“single sign-on” (SSO)

naive solution: every server knows every user password
insecure: break into one server, compromise all users
inefficient: to change password, user must contact all servers

58

Requirements

security
against attacks by passive eavesdroppers
against attacks by actively malicious users

transparency
users shouldn’t notice authentication taking place
password entering fine, as long as not all the time

scalability
lots of users, lots of servers

59

Threats

user impersonation
malicious user with access to a workstation pretends to be another user
from same workstation

network address impersonation
malicious user changes network address of their workstation to
impersonate another workstation

eavesdropping, tampering, replay
malicious user eavesdrops, tampers, or replays other users’
conversations to gain unauthorized access

60

Solution: Trusted Third Party

user proves identity to trusted third party (TTP), requests a
ticket for service

TTP knows all users and servers, can grant access

user gets a ticket

ticket is used to access service
TTP is authentication service on the network

convenient (but also single point of failure!)
requires high level of physical security

61

Ticket Requirements

ticket gives holder access to a network service

ticket proves that a user has authenticated

user should not be able to create a ticket

user should not be able to delegate tickets

62

Ticket Logistics

authentication service encrypts some information with a key
known to the server

e.g., the printer can decrypt it, but not the user

the user simply forwards the ticket to the printer, but cannot
create one or read it

server decrypts the ticket and verifies the information

63

Ticket Contents

ticket must include everything to prevent abuse
user using tickets to other servers
user using tickets after they lose access

e.g., they’ve been fired

user giving tickets to other users to use

ticket includes:
user name
server name
address of user’s workstation
ticket lifetime

64

Naive Authentication

protocol:
user sends password to authentication server
server provides an encrypted ticket

problems:
insecure: eavesdropper sees the password and can impersonate
inconvenient: need to send the password each time to get the ticket

separate authentication for email, printing, etc.

65

Two-Step Authentication

protocol:
user authenticates to the key distribution centre (KDC)
gets a special ticket granting service (TGS) ticket
user gives TGS ticket to TGS server when needed
gets encrypted service ticket (e.g., for printer)
user gives ticket to printer

66

Threats to Two Step

ticket hijacking
malicious user steals service ticket
uses it on the same workstation

network address verification doesn’t help

server must verify that the user who gives the ticket is the same who
was issued

no server authentication
attacker may misconfigure the network so they receive messages sent to
server

deny service or capture private information

67

Kerberos

KC is a long-term key of client C
derived from the user’s password

KTGS is a long-term key of the TGS
known by KDC and TGS

KV is a long-term key of network service V
known to V and TGS; each V has its own key

KC ,TGS is a short-term session key b/w C and TGS
created by KDC, known to C and TGS

KC ,V is a short-term session key b/w C and V
created by TGS, known to C and TGS

68

workstation

Alice

workstation

enter password
Alice

workstation

enter password

pbkdf

k

Alice

a

workstation

k

RAM

a

Alice

workstation authentication service

knows all clients

and their passwordsk

RAM

a

Alice

workstation authentication service

ID , ID
TGSa

k

RAM

a

Alice

workstation authentication service

ID , IDTGS get A’s passworda

k

RAM

a

Alice

workstation authentication service

ID , IDTGS

derive k

get A’s passworda

k

RAM

a

Alice

a

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

get A’s passworda

k

RAM

a

Alice

a

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

 , ID , time kdc , lifetime, ticket TGS{k

get A’s passworda

k

RAM

a

}ka

Alice

a

a,TGS TGS

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

 , ID , time kdc , lifetime, ticket TGS{k

all this is encrypted with k

get A’s passworda

k

RAM

a

}ka

a

Alice

a

a,TGS TGS

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

 , ID , time kdc , lifetime, ticket TGS{k

get A’s passworda

k

RAM

a

}ka

this is the session key for Alice and TGS

Alice

a

a,TGS TGS

ticket TGS={kA,TGS , IDA KCD , time , lifetime, ID TGS, addr A}kTGS

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

 , ID , time kdc , lifetime, ticket TGS{k

get A’s passworda

k

RAM

a

}ka

Alice

a

a,TGS TGS

ticket TGS={kA,TGS , IDA KCD , time , lifetime, ID TGS, addr A}kTGS

workstation authentication service

ID , IDTGS

derive k

knows TGS and K TGS

 , ID , time kdc , lifetime, ticket TGS{k

get A’s passworda

k

RAM

a

}ka

Alice

a

Alice can’t understand this, but is expected to deliver it to TGS

a,TGS TGS

wants

to

print

alice

a,TGSk

ka

alice

lpr

a,TGSk

ka

alice

print

have

ticket
TGS

need

ka,v for some
printer v

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

ka

alice

print

have

ticket
TGS

need

ka,v

ticket TGS

a,TGSk

IDv, ticket TGS

not encrypted because no key

exchange has been done yet

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

ka

alice

print

have

ticket
TGS

need

ka,v

ticket TGS

a,TGSk

IDv, ticket TGS

not encrypted because no key

exchange has been done yet

called

authenticator

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

ka

alice

print

have

ticket
TGS

need

ka,v

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

{ka,v, IDv,time TGS,

lifetime, ticket v}k

ka

alice

print

have

ticket
TGS

need

ka,v

a,TGS

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

{ka,v, IDv,time TGS,

lifetime, ticket v}k

all encrypted with k

which TGS can decrypt from

ticket TGS

ka

alice

print

have

ticket
TGS

need

ka,v

a,TGS

a,tGS

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

{ka,v, IDv,time TGS,

lifetime, ticket v}k

ka

alice

print

ticket v = {K a,v, IDa, addr a,IDv, time TGS, lifetime}k v

have

ticket
TGS

need

ka,v

a,TGS

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

{ka,v, IDv,time TGS,

lifetime, ticket v}k

ka

alice

print

ticket v = {K a,v, IDa, addr a,IDv, time TGS, lifetime}k v

all encrypted with k v

have

ticket
TGS

need

ka,v

a,TGS

ticket TGS

a,TGSk

IDv, ticket TGS

{IDa,addr a a,time }k a,TGS

can decrypt

for all services

V knows k v

TGS
knows K

ticket granting service

{ka,v, IDv,time TGS,

lifetime, ticket v}k

ka

alice

print

ticket v = {K a,v, IDa, addr a,IDv, time TGS, lifetime}k v

have

ticket
TGS

need

ka,v
ka,v

vticket a,TGS

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v decrypt

ticket to

get k a,v

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v decrypt

ticket to

get k a,v

decrypt

authenticator

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v decrypt

ticket to

get k a,v

decrypt

authenticator

verify addr a

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v decrypt

ticket to

get k a,v

decrypt

authenticator

verify addr a

{time + 1}k a,va

a,TGSk
{IDa,addr a a,time }kalice

print

have

ticket
TGS

ticket
v

k
a,v

k
a

printer v

kv

ticket v

a,v decrypt

ticket to

get k a,v

decrypt

authenticator

verify addr a

{time + 1}k a,v

compute a non−trivial function on

timea that proves knowledge of k a,v

and thereby knowledge of k v

a

Kerberos in Large Networks

one KDC isn’t enough
network is divided into realms

KDCs in different realms have different key databases

to access a service in another realm, users must:
get a ticket for home-realm TGS from home-realm KDC
get a ticket for remote-realm TGS from home-realm TGS

i.e., were the remote-realm TGS just a normal home-realm network
service

get ticket for remote service from that realm’s TGS
use remote-realm ticket to access service

100

Important Ideas in Kerberos

short-term session keys
long-term secrets used only to secure delivery of short-term keys
separate session key for each user-server pair

re-used by multiple sessions between same user/server

symmetric crypto only
fast, no expensive operations

trusted third party
new users only need to register a password

101

Important Ideas in Kerberos

proof of identity based on authenticators
client encrypts his identity, addr, time with session key

knowledge of key proves client has authenticated to KDC
also prevents replays if clocks are globally synchronized

server learns this key separately

via encrypted ticket that client can’t decrypt
verifies client’s authenticator

102

