Randomness

Why do we need randomness?

« stochastic simulations

« randomized algorithms

« distributed algorithms

« statistical sampling

« testing programs

« games (chance and procedural generation)
« generating encryption keys

« generating unpredictable numbers

= computers are very predictable

« machine operations are deterministic
« will do exactly same steps at boot

« a room of identical computers will boot at same time
« without any user interaction, there will be no difference
« random numbers you generate will always be the same
= unless you introduce something from environment

Key foundation of security is random numbers

Key foundation of security is random numbers
cryptographic key
Vs
authentication cookie
PIN numbers
second factor SMS codes

« true randomness

« randomness from good sources
« unpredictable from all information both before or after

« to an information theoretic attacker
« independent randomness
« e.g., coin flips
« pseudo randomness
« numbers that “look” random but may fail some statistical tests
« i.e., can be predicted with the right information

« numbers not independent from other generated numbers

If you've used random numbers before
you may have “seeded” it using the “time”.

If you've used random numbers before
you may have “seeded” it using the “time”.
This provides an initial unique value to create the stream

10

If you've used random numbers before
you may have “seeded” it using the “time”.
This provides an initial unique value to create the stream
Resulting stream looks very different as long as seed is
different

« pseudo random number generators (PRNGs) generate a stream
of pseudo random using a seed and an algorithm

« the seed should be unique (nonce) per use of random stream
generation

« stream can be arbitrarily long
» the same seed and algorithm generates the same stream
« the algorithm generates a stream of numbers from the seed that are
pseudorandom
e two types: cryptographically suitable and not
cryptographically suitable

11

12

Cryptographically suitable is a requirement
on the that a computationally
bounded adversary cannot distinguish a
PRNG's random stream and a true random stream.

13

Cryptographically suitable is a requirement
on the that a computationally
bounded adversary cannot distinguish a
PRNG's random stream and a true random stream.
That is, nothing in the PRNG's output stream
gives away that it is not true randomness.

14

Cryptographically suitable is a requirement

on the that a computationally
bounded adversary cannot distinguish a

PRNG's random stream and a true random stream.
That is, nothing in the PRNG's output stream

gives away that it is not true randomness.
Now a small seed can be generated with
true randomness, and used to make an
unlimited amount of pseudorandomness.

15

Cryptographically suitable is a requirement
on the that a computationally
bounded adversary cannot distinguish a
PRNG's random stream and a true random stream.
That is, nothing in the PRNG's output stream
gives away that it is not true randomness.
Now a small seed can be generated with
true randomness, and used to make an
unlimited amount of pseudorandomness.
Seed must be unpredictable. (Why?)

the seed is used to randomize the state

the state is then used to generate random numbers

if you know the state, you can generate the sequence of random
numbers

basic requirement for cryptographically suitable PRNG
« random numbers do not reveal the state

16

« prediction resistant

« looking at enough random numbers you cannot guess the next ones
« i.e., even without learning the state

« rollback resistant

« even if you know the current state, you can't learn previous numbers
generated by the stream until it reached this state
+ how can this be implemented?

17

seed

seed \
state
time 1

seed \
state
time 1

emit

randomness

state
time 2

state

time 1

J/ emit J/ emit

state | | state | state
time 1 | | time 2 | time 3
\l/ emit \l/ emit \l/ emit

sancomness [[[T T T TTTTTTTTTTIT]

time %

state | | state | state state
time 1 | | time 2 | time 3 time 4

¢ emit ¢ emit ¢ emit

zancomness [[[T T T TTTTTTT]

i

emit

e

time %

randomness

state | | state | state

time 1 | | time 2 | time 3

¢ emit ¢ emit ¢ emit

i

state | | state |

time 1 | | time 2 |

¢ emit ¢ emit

zancomness | [[[T T T T T T TTTTT]

prediction resistance: given this

state | | state | state state state
time 1 | | time 2 | time 3 time 4 time 5
\L emit \L emit \L emit \L emit \L emit

sancomness | [[[[T T T T T T T T T TTTITTIT I TT =TT TT1]

prediction resistance: given this cannot compute this

or this

seed
N\ .
state | | state | state S
time 1 | | time 2 | time 3 ti
e
\L emit \L emit \L emit \L emit \L emit

sancomness | [[[[T T T T T T T T T TTTITTIT I TT =TT TT1]

prediction resistance: given this cannot compute this

or this

seed
\ or this
N
ai e S
ine, 2 3 ti
7 e
\L emit \L emit \L emit \L emit \L emit

sancomness | [[[[T T T T T T T T T TTTITTIT I TT =TT TT1]

prediction resistance: given this cannot compute this

time %

randomness

state | | state | state

time 1 | | time 2 | time 3

¢ emit ¢ emit ¢ emit

i

time ___——————%E;’

rollback resistance

seed \ given this:
state | | state | state state state
time 1 | | time 2 | time 3 time 4 time 5
T
emit emit emit emit emit

sandomness [[[[T T T T T T TTTTTITTTTTTTITTITITITITITITTI0]

time %

rollback resistance

seed \ given this:

randomness

state | | state | state

time 1 | | time 2 | time 3
T

state
time 4
¢ emit

\Lemit \Lemit \bemih
[TTTT]

LI T] [

cannot compute this

time ___——————%E;’

rollback resistance

seed given this:
\ or this

state
time 4
J/ emit

sancomness [[| TP T I [[T T T T T T TTTTTTTTTI

cannot compute this

23

Why is Rollback Resistance Useful?

24

Why is Rollback Resistance Useful?
suppose PRNG is bad, or implementation screws up
a typical use for crypto is generate key, then generate |V

25

Why is Rollback Resistance Useful?
suppose PRNG is bad, or implementation screws up
a typical use for crypto is generate key, then generate |V
IV is not encrypted when sent!

« functions like rand () are not cryptographically secure
+ e.g., linear congruence generators (y = x - p(mod n))
« given enough samples, you can start predicting the next ones, figure
out seed
« seed is usually earlier timestamp: srand (time (NULL))
« if the seed is predictable then the stream is also predictable

+ e.g., using the time as the seed
» does not mean algorithm isn't cryptographically suitable, only misused

26

27

True random seed with a cryptographically suitable PRNG
yields a cryptographically suitable pseudo randomness

28

Recall some are simply a
cryptographically suitable PRNGs that generates
a one-time pad to XOR with the plaintext.

20

AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream
E k(x),E k(x+1),E k(x+2)....

A0

AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream
E k(x),E k(x+1),Ek(x+2)....

Such PRNG cannot (practically) “run out” of randomness,
but are vulnerable if the seed becomes known or AES is
broken.

41

AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream
E k(x),E k(x+1),Ek(x+2)....

Such PRNG cannot (practically) “run out” of randomness,
but are vulnerable if the seed becomes known or AES is
broken.

Is it rollback resistent?

« random numbers for cryptographic reasons: unpredictable

= one-time pads, encryption keys, random challenges
« much of day-to-day Internet security relies on random numbers
= when it needs to be unguessable

« random numbers for super important things: coin flips
« e.g., long-lived high-stakes keys for banks
« random numbers for other purposes: uniformly distributed

« salts, challenges, nonces, initialization vectors, identifiers
« if should be unique then cryptographically suitable not needed

« randomness based on time not guaranteed to be unique!
* i.e., time is a function every computer is trying to match

« or better yet just always use cryptographically secure randomness
+ LEAST SURPRISE and USABILITY, supports SAFE DEFAULTS

49

« observations of physical phenomenon
« dice rolling, coin flipping, radioactive decay
« hardware events

« time between keystrokes
* mouse movements

« 1/0O events

= device interrupts

« hard for external observers to also measure

43

A4

What about using network packet
arrival times, like microseconds
between packet arrivals or a
round-trip-time?

45

Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.

A6

Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.
e.g., current time, local port of a socket,
serial number or MAC address.

A7

Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.
e.g., current time, local port of a socket,
serial number or MAC address.

This is true even if it started
as a good true-random source.

A MILLION

Random Digits

100,000 Normal Deviates

RAND

50

If Eve can predict the next random
bit that Alice chooses even
better than random guess, it is a
bad source of randomness.

« Linux effectively has one random device: /dev/urandom
« /dev/random deprecated in 2020, retained for compatibility
« /dev/random was true randomness
+ /dev/urandom was pseudorandomness
« both now work the same
« uses ChaCha20 stream cipher as a PRNG
« randomness from kernel's entropy pool
« timings between interrupts
« user input such as keyboard and mouse
« hardware random number generators if available
« disk access timing
« kernel jitter

51

« formerly one would open /dev/random pseudofile and read it
= this runs a program whose output appeared as it were contents of file
« standard concet in UNIX systems where “everything is a file"
« security issue: files can change
« user has no proof /dev/random is doing what it should
« in containers or chroot environments, may not exist or be configured
« file was removed and replaced with something else
« file is not “ready” early in the boot process
= program may “run out” of file descriptors to open
« preferred method: getrandom system call

« ssize_t getrandom(void buf, size_t buflen, unsigned int flags)
« blocks until random device is ready

~)

« mixing multiple sources reduces attacker knowledge or control
« randomness from keyboard and mouse
« i.e., human activity measured at very fine time scales
« also events in the operating system
« e.g., network and disk activity that is human driven
« servers may not get useful HID events for randomness
= racks of identical servers running identical workloads won't differ

~c3

!ﬂﬂ!‘l A A IIQAK““““

R A AAAARAKAABARAARARRIAK

U.S. Patent ‘Mar. 24, 1998 Sheet 2 of 7 5,732,138

205
200
210
215
LAVALAMP
AFTER t
SECONDS
220

FIG. 2

U.S. Patent Mar. 24, 1998 Sheet 5 of 7 5,732,138

505 515
x = 00001101100 X +1=00001101101
HASH HASH
HASH(x) = 10110010011 HASH(x + 1) = 01010100010

[

510 s:

FIG.5

R7

At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.

=3

At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.
This is done over TLS (we'll cover later) but importantly...

[~e)

At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.
This is done over TLS (we'll cover later) but importantly...
TLS needs randomness to work in initial key exchange.

60

At Cloudflare each server on boot obtains

fresh entropy from a LavaRand service.
This is done over TLS (we'll cover later) but importantly...
TLS needs randomness to work in initial key exchange.

Each machine configured with its own set of secrets

one is used as an HMAC key to generate tags
on the current timestamp in nanoseconds
for TLS randomness in order to fill the entropy pool

61

Denoising Bias

v

Suppose you had a coin that flips heads two thirds odds
and tails one third.

A3

Suppose you had a coin that flips heads two thirds odds
and tails one third.
How do you get random numbers without bias?

A4

Suppose you had a coin that flips heads two thirds odds
and tails one third.

How do you get random numbers without bias?

flip twice, two heads is g, two tails is %

and one of each is % both ways.

A5

Suppose you had a coin that flips heads two thirds odds
and tails one third.
How do you get random numbers without bias?
flip twice, two heads is g, two tails is é
and one of each is % both ways.
say two heads is heads,

one of each is tails,

and two tails is a fail (repeat).

A6

What about a coin with unknown static bias?
that is, a X:1-X bias.

A7

What about a coin with unknown static bias?
that is, a X:1-X bias.
Can you get 50:50 random numbers without learning X7

A8

What about a coin with unknown static bias?
that is, a X:1-X bias.
Can you get 50:50 random numbers without learning X7
probability of one of each is the same for both
configurations regardless of X

A0

Suppose you get random numbers from
a known continuous distribution,
e.g., exponential distribution.

70

Suppose you get random numbers from
a known continuous distribution,
e.g., exponential distribution.
How can you extract uniform randomness from it?

1.0

0.8

= 0.6
Vi

—

A, 0.4

0.2

0.0

when you need a “name” for something

and this name must be unique
formatted as hyphen separated chunks of hexadecimal
« 00112233-4455-6677-8899-aabbccddeeff

three ways to generate them

72

73

Random UUID

74

Random UUID
use a random value (called version 4)
is 122 bits of randomness and some version information

oy
]
]

The is generated using a cryptographically strong pseudo
random number generator.

LI I

fi randomly generated

)

public static UUID randomUUID() {
SecureRandom ng = Holder.numberGenerator:

bytel] randomBytes = new byte[16];
ng.nextBytes(randomBytes) ;

randomBytes[6] &= 0x0f; /% clear version ®f
randomBytes[6]1 |= 0x40; /% set to version 4 =7
randomBytes[81 &= 0x3f; J7# clear variant ®f
randomBytes[8]1 |= 0x80; /% set to IETF variant =/

return new UUID(randomBytes):

« hash a string to generate it

« use MD5 (version 3) or SHA-1 (version 5)
« deterministic but unique for a particular value
« e.g., file name is name UUID based on its contents

76

name
fi byte array to be used to construct a

® oK K K K X X

fi generated from the specified array
®f
public static UUID nameUUIDFromBytes(bytel] name) {
MessageDigest md;:
try {
md = MessageDigest.getInstance("MD5");
} catch (NoSuchfilgorithmException nsae) {
throw new InternalError("HD5 not supported”, nsae):

¥

bytel]l md5Bytes = md.digest(name):

md5Bytes[6] &= 0x0f; /% clear version =/
md5Bytes[6] 1= 0x30; /% set to version 3 ®f
md5Bytes[8] &= 0x3f; /% clear variant =/
md5Bytes[8] |= 0x80: /% set to IETF variant #/

return new UUID(md5Bytes) ;

« the reason for the strange shape of the UUID

« uses a timestamp defined as follows:
« 60-bit count of 100-nanosecond intervals since 15 Oct 1582"

o XXXXXXXX-YYYY-Z27277-VVVV-WWWWWWWWWWWW
« X is low value of timestamp
« Y is middle value of timestamp

« Z is high value of timestamp and version
« V is clock sequence number

» incremented each time the system clock changes
« W is node id (MAC address of the system that generated)

= 48 bit value
« reveals the host that generates it, but “guaranteed” to be unique

78

70

Example of Bad Randomness

» Dual_LEC_DRBG is a PRNG based on elliptic curves

« relied on two parameters, P and @
« if chosen in a particular way one can predict random numbers
« basic attack: 30 output bytes revealed PRNG's internal state

20

21

it was criticized by experts for its poor design shortly after
publication

it was thousands of times slower than existing simpler secure
alternatives
there was bias in the output bytes

« i.e., it failed the most basic test of a useful PRNG

it was known that for any P, there would be a specific @
backdoor

« impossible for anyone to prove they didn't know backdoor

Q9

It was clear this is a terrible PRNG.

Q2

It was clear this is a terrible PRNG.
And no one wanted to use it.

A

It was clear this is a terrible PRNG.
And no one wanted to use it.

No one did. Case Closed.

QR

It was clear this is a terrible PRNG.

And no one wanted to use it.
No one did. Case Closed.
Except...

Exclusive: Secret contract tied NSA and
security industry pioneer

By Joseph Menn 9 MIN READ f v

SAN FRANCISCO (Reuters) - As a key part of a campaign to embed
encryption software that it could crack into widely used computer products,
the U.S. National Security Agency arranged a secret $10 million contract with
RSA, one of the most influential firms in the computer security industry,

Reuters has learned.

« RSA accepted 10 million dollars from NSA in a secret deal

« used a P and @ that the NSA recommended
« implemented it and made it the default PRNG

» RSA then pushed it as a NIST standard and it was put into other
products

» NSA could then break security since a backdoor PRNG is now
widespread

Q7

« if you had backdoor, looking at 40 bytes of randomness would
reveal state
« it was also not rollback resistant!
= once you know state, you can go backwards and forwards

Q9

Versions: 00 01 02

Network Working Group E. Rescorla
Internet-Draft RTFM, Inc

Intended status: Informational M. Salter
Expires: September 3, 2009 National Security Agency

March 02, 2009

Extended Random Values for TLS
draft-rescorla-tls-extended-random-02.txt

o0

If you generate encryption keys and then generate
“benign” random values later that you send in plaintext,
NSA can determine your state and rollback to the key.

« many implementations of crypto rely on specific “magic”
numbers to work

« if these are chosen without clear justification it leaves room for
such attacks

« “nothing-up-my-sleeve” numbers are one chosen to be by
construction above suspicious of hidden properties

« should have a low Kolmogorov complexity
« should be hard to “tweak” into any other number using the same

approach

01

/f Initialize variables:

var int a@ :
var int be :=
var int c@ :=
var int de :

Bx67452301
BxefcdabB89
0x98badcfe
Bx10325476

AES S5-box

o1

02

03

06

o7

or

63

Tc

77

7b

f2

&b

6f

<5

30

01

a7

2b

fe

d7y

ab

76

10

ca

82

9

7d

fa

59

47

o

ad

d4

a2

af

9c

ad

72

c0

b7

fd

93

26

36

3f

7

=

34

a5

e5

fl

71

da

31

15

04

c7

25

c3

18

96

05

9a

a7

12

80

e

eb

27

b2

75

09

83

2c

la

1b

be

S5a

al

52

3b

d6

b3

29

el

2f

84

53

dl

oo

ed

20

fc

bl

5b

Ga

chb

be

39

4a

4c

58

cf

do

ef

aa

fb

43

4d

33

85

45

i}

oz

7f

50

3c

af

ad

51

a3

40

8f

92

ad

38

5

bc

b6

da

21

10

ff

3

d2

cd

0c

13

ec

5f

a7

44

17

cd

al

Te

3d

[

5d

19

73

90

60

g1

4f

dc

22

2a

90

88

46

ee

bE

14

de

Se

Ob

db

el

32

3a

Oa

49

06

24

5c

c2

d3

ac

62

a1

85

ed

79

el

cB

37

6d

ad

d5

4e

ad

6C

56

4

ea

65

7a

ae

08

ba

78

25!

2e

1c

ab

b4

b

ed

dd

74

1f

ahb

bd

8b

8a

70

3e

b5

66

438

03

f6

Oe

6l

35

57

b9

&6

cl

1d

9e

el

el

8

98

11

69

d9

Be

a4

9b

le

87

el

e

55

28

df

8c

al

g9

od

bf

eb

42

68

41

99

2d

of

b0

54

bk

16

The column is determined by the least significant nibkle, and the row by

the most significant nibble. For example, the value 9a;s is converted into
b81s.

50 1000111 1][bk 1
5 1100011 1f[bh 1
5 1110001 1|k 0
s|_t 1000 afisf fo
5 1111100 0[[b 0
5 001 11 110 0[[b 1
55 00 1 1 1 1 10|t 1
5 0001111 1)[b 0

where [s7, ..., sp] is the S-box output and [b7. ..., bg] is the multiplicative inverse as a vector.
This affine transformation is the sum of multiple rotations of the byte as a vector, where addition is the XOR operation:
s=bd (b 1)®(b<x2)o(b=cd)o(d=c 1) D63,
where b represents the multiplicative inverse, & is the bitwise XOR operator, << is a left bitwise circular shift, and the constant 635 = 011000115 is given in hexadecimal.
An equivalent formulation of the affine transformation is
8i = bi ® biia) moas D Ui 5) moas B bs) moas B biiy7)moas B
where s, b, and ¢ are 8 bit arrays, ¢ is 011000115, and subscripts indicate a reference te the indexed bit.!3]
Another equivalent is:
s=(bx3Ly mod 2570) @ 9941151

where % is polynomial multiplication of b and 31y taken as bit arrays.

0]

Best PRNG to use: HMAC_DRBG

06

Best PRNG to use: HMAC_DRBG
state is a key k from seed and v of data

Q7

Best PRNG to use: HMAC_DRBG
state is a key k from seed and v of data
uses HMAC three times per round
one for randomness, two to update state

function hmac drbg generate (state, n) {
tmp = ""
while (len (tmp) < N){
state.v = hmac(state.k,state.v)
tmp = tmp || state.wv
}
// Update state with no input
state.k = hmac(state.k, state.v || 0x00)
state.v = hmac(state.k, state.v)
// Return the first N bits of tmp
return tmp[0:N]

« prediction resistance
+» HMAC prevents generating tags without key
« rollback resistance

« current key is an HMAC tag on previous state
« HMAC prevents key revelation

00

