
Randomness

1



Why do we need randomness?

2



Need for Randomness

stochastic simulations

randomized algorithms

distributed algorithms

statistical sampling

testing programs

games (chance and procedural generation)

generating encryption keys

generating unpredictable numbers

3



Fundamental Problem

computers are very predictable
machine operations are deterministic
will do exactly same steps at boot

a room of identical computers will boot at same time

without any user interaction, there will be no difference
random numbers you generate will always be the same

unless you introduce something from environment

4



Key foundation of security is random numbers

5



Key foundation of security is random numbers
cryptographic key

IVs
authentication cookie

PIN numbers
second factor SMS codes

6



Types of Randomness

true randomness
randomness from good sources
unpredictable from all information both before or after

to an information theoretic attacker

independent randomness
e.g., coin flips

pseudo randomness
numbers that “look” random but may fail some statistical tests

i.e., can be predicted with the right information

numbers not independent from other generated numbers

7



If you’ve used random numbers before
you may have “seeded” it using the “time”.

8



If you’ve used random numbers before
you may have “seeded” it using the “time”.

This provides an initial unique value to create the stream

9



If you’ve used random numbers before
you may have “seeded” it using the “time”.

This provides an initial unique value to create the stream
Resulting stream looks very different as long as seed is

different

10



Pseudorandom Numbers

pseudo random number generators (PRNGs) generate a stream
of pseudo random using a seed and an algorithm

the seed should be unique (nonce) per use of random stream
generation

stream can be arbitrarily long

the same seed and algorithm generates the same stream
the algorithm generates a stream of numbers from the seed that are
pseudorandom

two types: cryptographically suitable and not
cryptographically suitable

11



Cryptographically suitable is a requirement
on the algorithm that a computationally
bounded adversary cannot distinguish a

PRNG’s random stream and a true random stream.

12



Cryptographically suitable is a requirement
on the algorithm that a computationally
bounded adversary cannot distinguish a

PRNG’s random stream and a true random stream.
That is, nothing in the PRNG’s output stream
gives away that it is not true randomness.

13



Cryptographically suitable is a requirement
on the algorithm that a computationally
bounded adversary cannot distinguish a

PRNG’s random stream and a true random stream.
That is, nothing in the PRNG’s output stream
gives away that it is not true randomness.
Now a small seed can be generated with
true randomness, and used to make an
unlimited amount of pseudorandomness.

14



Cryptographically suitable is a requirement
on the algorithm that a computationally
bounded adversary cannot distinguish a

PRNG’s random stream and a true random stream.
That is, nothing in the PRNG’s output stream
gives away that it is not true randomness.
Now a small seed can be generated with
true randomness, and used to make an
unlimited amount of pseudorandomness.
Seed must be unpredictable. (Why?)

15



PRNG State

the seed is used to randomize the state

the state is then used to generate random numbers

if you know the state, you can generate the sequence of random
numbers
basic requirement for cryptographically suitable PRNG

random numbers do not reveal the state

16



PRNG Cryptographic Properties

prediction resistant
looking at enough random numbers you cannot guess the next ones
i.e., even without learning the state

rollback resistant
even if you know the current state, you can’t learn previous numbers
generated by the stream until it reached this state
how can this be implemented?

17



seed



state

time 1

seed



state

time 1

emit

randomness

seed



state

time 1

emit emit

time

randomness

seed

state

time 2



state

time 1

emit emit emit

state

time 3

time

randomness

seed

state

time 2



state

time 1

emit emit emit emit

state

time 3

state

time 4

time

randomness

seed

state

time 2



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

prediction resistance: given this



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

cannot compute thisprediction resistance: given this



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

cannot compute this

or this

prediction resistance: given this



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

cannot compute this

or this

or this

prediction resistance: given this



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

rollback resistance

given this:



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

rollback resistance

given this:

cannot compute this



state

time 1

emit emit emitemit emit

state

time 3

state

time 4

state

time 5

time

randomness

seed

state

time 2

or this

rollback resistance

given this:

cannot compute this



Why is Rollback Resistance Useful?

33



Why is Rollback Resistance Useful?
suppose PRNG is bad, or implementation screws up

a typical use for crypto is generate key, then generate IV

34



Why is Rollback Resistance Useful?
suppose PRNG is bad, or implementation screws up

a typical use for crypto is generate key, then generate IV
IV is not encrypted when sent!

35



Non-Cryptographically Suitable PRNG

functions like rand() are not cryptographically secure
e.g., linear congruence generators (y = x · p(mod n))
given enough samples, you can start predicting the next ones, figure
out seed
seed is usually earlier timestamp: srand(time(NULL))

if the seed is predictable then the stream is also predictable
e.g., using the time as the seed
does not mean algorithm isn’t cryptographically suitable, only misused

36



True random seed with a cryptographically suitable PRNG
yields a cryptographically suitable pseudo randomness

37



Recall some stream ciphers are simply a
cryptographically suitable PRNGs that generates

a one-time pad to XOR with the plaintext.

38



AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream

E k(x),E k(x + 1),E k(x + 2) . . . .

39



AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream

E k(x),E k(x + 1),E k(x + 2) . . . .
Such PRNG cannot (practically) “run out” of randomness,
but are vulnerable if the seed becomes known or AES is

broken.

40



AES in Counter mode is simply using a random key K
and a random initial counter x and creating a stream

E k(x),E k(x + 1),E k(x + 2) . . . .
Such PRNG cannot (practically) “run out” of randomness,
but are vulnerable if the seed becomes known or AES is

broken.
Is it rollback resistent?

41



What needs Randomness

random numbers for cryptographic reasons: unpredictable
one-time pads, encryption keys, random challenges
much of day-to-day Internet security relies on random numbers
when it needs to be unguessable

random numbers for super important things: coin flips
e.g., long-lived high-stakes keys for banks

random numbers for other purposes: uniformly distributed
salts, challenges, nonces, initialization vectors, identifiers
if should be unique then cryptographically suitable not needed

randomness based on time not guaranteed to be unique!
i.e., time is a function every computer is trying to match

or better yet just always use cryptographically secure randomness
least surprise and usability, supports safe defaults

42



Good Sources of Cryptographically Suitable Randomness

observations of physical phenomenon
dice rolling, coin flipping, radioactive decay

hardware events
time between keystrokes
mouse movements
I/O events
device interrupts

hard for external observers to also measure

43



What about using network packet
arrival times, like microseconds
between packet arrivals or a

round-trip-time?

44



Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.

45



Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.
e.g., current time, local port of a socket,

serial number or MAC address.

46



Anything that can be measured, predicted, or known
cannot be used for cryptographic purposes.
e.g., current time, local port of a socket,

serial number or MAC address.
This is true even if it started
as a good true-random source.

47







If Eve can predict the next random
bit that Alice chooses even slightly
better than random guess, it is a

bad source of randomness.

50



Randomness for Linux

Linux effectively has one random device: /dev/urandom
/dev/random deprecated in 2020, retained for compatibility
/dev/random was true randomness
/dev/urandom was pseudorandomness
both now work the same
uses ChaCha20 stream cipher as a PRNG

randomness from kernel’s entropy pool
timings between interrupts
user input such as keyboard and mouse
hardware random number generators if available
disk access timing
kernel jitter

51



Accessing Randomness

formerly one would open /dev/random pseudofile and read it
this runs a program whose output appeared as it were contents of file
standard concet in UNIX systems where “everything is a file”

security issue: files can change
user has no proof /dev/random is doing what it should

in containers or chroot environments, may not exist or be configured
file was removed and replaced with something else
file is not “ready” early in the boot process
program may “run out” of file descriptors to open

preferred method: getrandom system call
ssize t getrandom(void buf, size t buflen, unsigned int flags)
blocks until random device is ready

52



Sourcing Randomness

mixing multiple sources reduces attacker knowledge or control
randomness from keyboard and mouse

i.e., human activity measured at very fine time scales

also events in the operating system

e.g., network and disk activity that is human driven

servers may not get useful HID events for randomness
racks of identical servers running identical workloads won’t differ

53









At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.

57



At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.

This is done over TLS (we’ll cover later) but importantly...

58



At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.

This is done over TLS (we’ll cover later) but importantly...
TLS needs randomness to work in initial key exchange.

59



At Cloudflare each server on boot obtains
fresh entropy from a LavaRand service.

This is done over TLS (we’ll cover later) but importantly...
TLS needs randomness to work in initial key exchange.
Each machine configured with its own set of secrets

one is used as an HMAC key to generate tags
on the current timestamp in nanoseconds

for TLS randomness in order to fill the entropy pool

60



Denoising Bias

61



Suppose you had a coin that flips heads two thirds odds
and tails one third.

62



Suppose you had a coin that flips heads two thirds odds
and tails one third.

How do you get random numbers without bias?

63



Suppose you had a coin that flips heads two thirds odds
and tails one third.

How do you get random numbers without bias?
flip twice, two heads is 4

9 , two tails is 1
9

and one of each is 2
9 both ways.

64



Suppose you had a coin that flips heads two thirds odds
and tails one third.

How do you get random numbers without bias?
flip twice, two heads is 4

9 , two tails is 1
9

and one of each is 2
9 both ways.

say two heads is heads,
one of each is tails,

and two tails is a fail (repeat).

65



What about a coin with unknown static bias?
that is, a X:1-X bias.

66



What about a coin with unknown static bias?
that is, a X:1-X bias.

Can you get 50:50 random numbers without learning X?

67



What about a coin with unknown static bias?
that is, a X:1-X bias.

Can you get 50:50 random numbers without learning X?
probability of one of each is the same for both

configurations regardless of X

68



Suppose you get random numbers from
a known continuous distribution,
e.g., exponential distribution.

69



Suppose you get random numbers from
a known continuous distribution,
e.g., exponential distribution.

How can you extract uniform randomness from it?

70





UUID: Universally Unique Identifier (rfc 4122)

when you need a “name” for something

and this name must be unique
formatted as hyphen separated chunks of hexadecimal

00112233-4455-6677-8899-aabbccddeeff

three ways to generate them

72



Random UUID

73



Random UUID
use a random value (called version 4)

is 122 bits of randomness and some version information

74





Name-derived UUID

hash a string to generate it

use MD5 (version 3) or SHA-1 (version 5)
deterministic but unique for a particular value

e.g., file name is name UUID based on its contents

76





Time-based UUID:

the reason for the strange shape of the UUID
uses a timestamp defined as follows:

60-bit count of 100-nanosecond intervals since 15 Oct 1582”

XXXXXXXX-YYYY-ZZZZ-VVVV-WWWWWWWWWWWW
X is low value of timestamp
Y is middle value of timestamp
Z is high value of timestamp and version
V is clock sequence number

incremented each time the system clock changes

W is node id (MAC address of the system that generated)

48 bit value
reveals the host that generates it, but “guaranteed” to be unique

78



Example of Bad Randomness

79



Dual EC PRNG

Dual EC DRBG is a PRNG based on elliptic curves

relied on two parameters, P and Q
if chosen in a particular way one can predict random numbers

basic attack: 30 output bytes revealed PRNG’s internal state

80



Dual EC DRBG

it was criticized by experts for its poor design shortly after
publication

it was thousands of times slower than existing simpler secure
alternatives
there was bias in the output bytes

i.e., it failed the most basic test of a useful PRNG

it was known that for any P , there would be a specific Q
backdoor

impossible for anyone to prove they didn’t know backdoor

81



It was clear this is a terrible PRNG.

82



It was clear this is a terrible PRNG.
And no one wanted to use it.

83



It was clear this is a terrible PRNG.
And no one wanted to use it.
No one did. Case Closed.

84



It was clear this is a terrible PRNG.
And no one wanted to use it.
No one did. Case Closed.

Except...

85





Dual EC DRBG

RSA accepted 10 million dollars from NSA in a secret deal
used a P and Q that the NSA recommended
implemented it and made it the default PRNG

RSA then pushed it as a NIST standard and it was put into other
products

NSA could then break security since a backdoor PRNG is now
widespread

87



Broken Dual EC DRBG

if you had backdoor, looking at 40 bytes of randomness would
reveal state
it was also not rollback resistant!

once you know state, you can go backwards and forwards

88





If you generate encryption keys and then generate
“benign” random values later that you send in plaintext,
NSA can determine your state and rollback to the key.

90



Sabotage Magic Numbers

many implementations of crypto rely on specific “magic”
numbers to work

if these are chosen without clear justification it leaves room for
such attacks
“nothing-up-my-sleeve” numbers are one chosen to be by
construction above suspicious of hidden properties

should have a low Kolmogorov complexity
should be hard to “tweak” into any other number using the same
approach

91









Best PRNG to use: HMAC DRBG

95



Best PRNG to use: HMAC DRBG
state is a key k from seed and v of data

96



Best PRNG to use: HMAC DRBG
state is a key k from seed and v of data

uses HMAC three times per round
one for randomness, two to update state

97





HMAC DRBG

prediction resistance
HMAC prevents generating tags without key

rollback resistance
current key is an HMAC tag on previous state
HMAC prevents key revelation

99


