
Hash Functions

1



Hash Functions

a function that maps any objects to a concise digest
any particular object gives the same digest
the digest is fixed size
the digest doesn’t tell you the object

2



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

.
.
.

pre−image space hash space



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

.
.
.

pre−image space hash space



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

.
.
.

pre−image space

h(a few words)

h(word)

.
.
.

hash space



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

.
.
.

pre−image space

h(a few words)

h(word)

.
.
.

hash space

"random−looking"

but unique



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

finite size

e.g., 2256

.
.
.

pre−image space

h(a few words)

h(word)

.
.
.

hash space

"random−looking"

but unique



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

finite size

e.g., 2256

.
.
.

pre−image space

h(a few words)

h(word)

.
.
.

hash space

"random−looking"

but unique

infinite size



word

a few words

Name

[entire files]

[any length binary string]

425ae8

bc8d82

0a0f31

9525de
.
.
.

92eff1

finite size

e.g., 2256

.
.
.

pre−image space

h(a few words)

h(word)

.
.
.

hash space

"random−looking"

but unique

infinite size



Hash Functions

two kinds
cryptographically suitable and not cryptographically suitable
we only consider cryptographically suitable hash functions
cryptographic hash function
hash functions used for e.g., hash tables are something else

hash functions are widespread and are used for all sorts of
reasons

both in and out of cryptography

10



Three Goals

H1: preimage resistant (one-way property)
given the description of a hash function H, and y such that y = H(x)
it is computationally infeasible to compute x

H2: second preimage resistant
given the description of a hash function H, and x , it is computationally
infeasible to compute x ′ ̸= x such that H(x ′) = H(x)
remember that the domain of hash functions is infinite while the range
is finite

H3: collision resistant
given the description of a hash function H, it is computationally
infeasible to compute x and y such that H(x) = H(y)
this condition is surprising important
it also seems so unlikely: just one collision is needed
collision resistance implies second preimage resistance (why?)

11



input h(input)
hash function



input h(input)
hash function

input h(input)

H1 pre-image resistance



input h(input)
hash function

input h(input)

H1 pre-image resistance

input h(input)

other

H2 second pre-image resistance



input h(input)
hash function

input h(input)

value1

value2

h(value1)

=h(value2)

H1 pre-image resistance

input h(input)

other

H2 second pre-image resistance

H3 collision resistance



The goal of a hash function is to
implement a random oracle.

16



The goal of a hash function is to
implement a random oracle.

Random oracle gives some random
value to every different possible
input but crucially consistently

gives the same value to same input.

17



The goal of a hash function is to
implement a random oracle.

Random oracle gives some random
value to every different possible
input but crucially consistently

gives the same value to same input.
H1–3 are trivially achieved.

18



Merkle–Damg̊ard Construction

define a secure (H1–3) compression function

compression function maps {0, 1}2·n → {0, 1}n
i.e., it halves the number of bits each time in a collision resistant,
one-way manner
takes two n-length inputs: IV and a message block
produces one n-length output: hash

then to hash a message M:
add 0s to M until it is block aligned (i.e., length a multiple of n)
start with a fixed initialization vector IV
pass IV and first block to compression function
use hash output as IV input for next compression function
output the last result

19



Iterated Hashing

divide input to hash into blocks B1,B2, . . . ,Bn, each of length
256

Bn zero padded if necessary

cur ← IV
for i = 1 . . . n

cur ← H(cur, Bi )

return cur

20



M–D construction guarantees that if the
compression function is collision resistant
then the hash function is collision resistant.

21



Standard hash functions use M–D
construction: MD5, SHA1, SHA256.

22



Standard hash functions use M–D
construction: MD5, SHA1, SHA256.

At the core they are a secure compression function.

23









SHA1 is similiar but a bit more complicated.

27



SHA1 is similiar but a bit more complicated.
SHA256 is similiar but a bit more complicated.

28



SHA1 is similiar but a bit more complicated.
SHA256 is similiar but a bit more complicated.

Use SHA256 whenever you need a hash (for now).

29



SHA1 is similiar but a bit more complicated.
SHA256 is similiar but a bit more complicated.

Use SHA256 whenever you need a hash (for now).
SHA3 does not use the M–D construction

30



Uses of Hash Functions

31



Unique Digests

have a unique way of representing some data or state
unique file names

e.g., distributed hash tables where hash of data is the key

data deduplication in cloud storage
e.g., email service where multiple users have the same attachment

32



Message Signing

public-key crypto (discussed later) allows us to “digitally sign”
messages

anyone can verify, only we can produce signature
this is an expensive operation

small digest represents the full message
so instead of signing a message, we only sign its hash

what does this mean for security?

what would go wrong if H1, H2, or H3 didn’t hold?
would it be obvious?

33



Chained Hash

used to prove the order of messages
trivial if you include the entire earlier message
more efficient: include the hash of it instead

shows that everything in one message was created knowing the
preimage

what hash property prevents creating alternative history?

34



Commitment

used in lots protocols

idea is that one party commits to a value

the value can be later revealed

the commitment alone gives no information about the value
(under computational bound), but a different value cannot be
given
allows you to get information without being allowed to change
your answers based on what you learn

proves that the message “existed” before the commitment is created

how to implement this?

35



pick a card

M V



pick a card

M V

7 of clubs



pick a card

M V

7 of clubs

your card is 7 of clubs



pick a card

M V



pick a card

M V

7 of clubs



pick a card

M V

7 of clubs

okay



pick a card

M V

7 of clubs

okay

your card is 7 of clubs



pick a card

M V

7 of clubs

okay

your card is 7 of clubs

no it was 9 of spades



pick a card

M V

7 of clubs



pick a card

M V

7 of clubs

okay H(7 of clubs)



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)

check H(2 of hearts)



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)

check H(2 of hearts)

check H(3 of hearts)

...



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)

check H(2 of hearts)

check H(3 of hearts)

...

brute

force

attack{



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)

check H(2 of hearts)

check H(3 of hearts)

...

brute

force

attack{
your card is 7 of clubs



pick a card

M V

7 of clubs

okay H(7 of clubs)

check H(ace of hearts)

check H(2 of hearts)

check H(3 of hearts)

...

brute

force

attack{
your card is 7 of clubs outstanding sir!



pick a card

M V

7 of clubs

okay H(128-bit nonce || 7 of clubs)



Checksums (Integrity)

check that file downloaded correctly
hash the file and check it against the “checksum”

the file of the message

if any bit changes, even in checksum, it will be noticed

you know you have the message in its entirety

53



Computing a checksum:

cat filename | sha256sum

cat filename | sha256sum

sha256sum file1 file2 ...

echo -n hello | sha256sum

other hash functions operate similar
e.g., md5sum, sha1sum

54



Do checksums prevent Eve from modifying messages?

55



Do checksums prevent Eve from modifying messages?
Only if Eve is passive, in which case she can’t alter it.

56



Do checksums prevent Eve from modifying messages?
Only if Eve is passive, in which case she can’t alter it.

Protects against random bit errors; not deliberate ones.

57



Do checksums prevent Eve from modifying messages?
Only if Eve is passive, in which case she can’t alter it.

Protects against random bit errors; not deliberate ones.
These are the kind of things that adversaries do

(low probability faults).

58



Do checksums prevent Eve from modifying messages?
Only if Eve is passive, in which case she can’t alter it.

Protects against random bit errors; not deliberate ones.
These are the kind of things that adversaries do

(low probability faults).
i.e., the failure conditions can be all
the worst things possible for you.

59



Message Authentication Codes (MAC)

used to authenticate the message
know the origin of the message

provides message integrity
make sure it wasn’t changed in transmission

these are also called tags
message and tag

the symmetric-key version of signatures
both parties can generate a MAC
does not not prove who sent it
epistemic evidence for two parties
not non-repudiable to outsiders

60



MAC Security

MAC is a function fk(m)→ t
f is a public function
k is a secret key
m is a message
t is the corresponding tag

security assumptions
adversary is assumed to not know k
adversary is given some number of (mi , ti ) pairs where ti = fk(mi )

existential forgery
adversary computes (m, t) where t = fk(m)

selective forgery
adversary is given m and computes t where t = fk(m)

verifiable forgery
adversary is given m, t and can determine if t = fk(m)

key recovery
an adversary determines k

61



Implementing MACs

main idea: hash the message and a key somehow together
tag is this hash
a keyed hash function

security based on the key being secret
if message changes, the hash won’t match
adversary cannot compute the tag for an altered message

how can we implement this?

62



Try 1: H(k |m)

63



Try 1: H(k |m)
any problems?

64



Try 1: H(k |m)
any problems?

for M–D hash functions if I have H(k |m)
then I can compute H(k |m|m′)

(modulo block alignment)

65



Try 1: H(k |m)
any problems?

for M–D hash functions if I have H(k |m)
then I can compute H(k |m|m′)

(modulo block alignment)
meaning I can append to a message
and compute Alice’s MAC for it

66



Length Extension Example

67



Length Extension Example
ATTACK AT DAWN

68



Length Extension Example
ATTACK AT DAWN

WOULD BE A BAD IDEA
ATTACK AT DUSK INSTEAD

69



Another Extension Example

70



Another Extension Example
I will pay you $100

71



Another Extension Example
I will pay you $100

,000,000

72



Another Extension Examples
given tag of URL

/q?field1=true&field2=12 compute:

73



Another Extension Examples
given tag of URL

/q?field1=true&field2=12 compute:
/q?field1=true&field2=123

74



Another Extension Examples
given tag of URL

/q?field1=true&field2=12 compute:
/q?field1=true&field2=123

/q?field1=true&field2=12&field3=extra

75



Another Extension Examples
given tag of URL

/q?field1=true&field2=12 compute:
/q?field1=true&field2=123

/q?field1=true&field2=12&field3=extra
/q?field1=true&field2=12&field1=false

76







Try 2: H(m|k)

79



Try 2: H(m|k)
any problems?

80



Try 2: H(m|k)
any problems?

suppose H collides for m, m′,
then tag is valid for both m and m′

81



Try 2: H(m|k)
any problems?

suppose H collides for m, m′,
then tag is valid for both m and m′

this shouldn’t happen (H3)

82



Try 2: H(m|k)
any problems?

suppose H collides for m, m′,
then tag is valid for both m and m′

this shouldn’t happen (H3)
but why not defend against it anyway!

83



Hash-Based MAC (HMAC)

standard for MAC
always use this
never hash a key if you cannot articulate why HMAC is not suitable
time-tested tools

HMAC(k ,m) = H((K ′ ⊕ opad)∥H((K ′ ⊕ ipad∥m))
K ′ is either H(k) or k with zeros to match blocksize of H
opad is 0x5c5c. . .
ipad is 0x3636. . .

HMAC defeats all known attacks
assuming that H is a secure hash function

84



It’s encrypt-then-MAC.
1. Encrypt message with key.
2. HMAC ciphertext with key.
3. Append MAC to ciphertext.

85



It’s encrypt-then-MAC.
1. Encrypt message with key.
2. HMAC ciphertext with key.
3. Append MAC to ciphertext.
On receipt, check the MAC is

valid for the ciphertext
before trying to decrypt.

86



Collisions in hash functions

87



When a hash function has a collision,

88



When a hash function has a collision,
we stop using it and replace it.

89



When a hash function has a collision,
we stop using it and replace it.

MD5 has a collision, so we used SHA1.

90



When a hash function has a collision,
we stop using it and replace it.

MD5 has a collision, so we used SHA1.
SHA1 has a collision, so we used SHA256.

91



MD5 Collision
4dc968ff0ee35c209572d4777b721587d36fa7b21bd
c56b74a3dc0783e7b9518afbfa200a8284bf36e8e4b
55b35f427593d849676da0d1555d8360fb5f07fea2

collides with
4dc968ff0ee35c209572d4777b721587d36fa7b21bd
c56b74a3dc0783e7b9518afbfa202a8284bf36e8e4b
55b35f427593d849676da0d1d55d8360fb5f07fea2

92



But why is just having access to
one single collision so bad?

93



First, one collision can suggest a technique to make more.

94



First, one collision can suggest a technique to make more.
Collisions are typically not found by brute force alone.

95



Second, collisions in the compression
function create more in the hash function.

96



Second, collisions in the compression
function create more in the hash function.

in particular, all suffices match:
H(x) = H(y)⇒ H(x |z) = H(y |z)

(modulo block alignment)

97



Second, collisions in the compression
function create more in the hash function.

in particular, all suffices match:
H(x) = H(y)⇒ H(x |z) = H(y |z)

(modulo block alignment)
if victim is willing to sign xz,

it is a valid signature for yz too.

98



Document formats

postscript (printer format) has if constructs
if (x == y)

print good

else

print bad

suppose H(“if (x”) = H(“if (y”)
if (y == y)

print good

else

print bad

these two documents have the same hash
one appears as “good”
the other appears as “bad”
two arbitrary different messages

99



More Examples

Microsoft documents have “macros”
can change what is presented on screen

PDF has /If and /Javascript directives

HTML has clientside JavaScript that can run
MKV videos can have multiple track (even video)

track metadata identify if it is default

100



MD5 known weak in 2004

101



MD5 known weak in 2004
Still used for certificates in 2008

102



MD5 known weak in 2004
Still used for certificates in 2008

Prefix collision attack used to fake a certificate

103



MD5 known weak in 2004
Still used for certificates in 2008

Prefix collision attack used to fake a certificate
Still used by Microsoft in 2012

104



MD5 known weak in 2004
Still used for certificates in 2008

Prefix collision attack used to fake a certificate
Still used by Microsoft in 2012
Flame malware used prefix

collision in MS’s CODE UPDATES

105





Finding Collisions takes about 1–2 days
on a cluster of 200 PS3s

107





So we switched to SHA1 but then in 2017...

109









Encryption makes channel secure

113



Encryption makes channel secure
Adding a MAC makes it authentic

114



Encryption makes channel secure
Adding a MAC makes it authentic
Assuming there is only other entity
with encryption key and MAC key.

115



Two questions remain:

116



Two questions remain:
how are encryption keys shared
in the first place if not over

an insecure channel (future lecture)

117



Two questions remain:
how are encryption keys shared
in the first place if not over

an insecure channel (future lecture)
how are encryption keys generated

(next lecture)

118


