
Prof. Reardon Assignment 2 DUE Oct 13th by noon CPSC 526

Question 1: Hash Function Collisions (24 points)

We saw that collisions can be more powerful depending on the file format. Some formats by
virtue of their design can have more devastating effects for an arbitrary collision. Imagine the
following bizarrely designed file format that renders it quite vulnerable to collision attacks.1

byte | meaning

------+----------------------------------

00 | magic number fixed 0xd1

01 | magic number fixed 0x31

02 | magic number fixed 0xdd

03 | short "length" high value

04 | short "length" low value

05-18 | reserved

19 | short "jump" high value

20 | short "jump" low value

.. |

J+0 | short "datalength" high value

J+1 | short "datalength" low value

J+2 | byte 0 for stored data

J+3 | byte 1 for stored data

.. | ..

J+1+dl| byte dl-1 for stored data (last)

------+----------------------------------

J = jump MOD length

dl = datalength

The first three bytes are a “magic number”, which typically is used to indicate the file
format; in this case the byte sequence 0xd131dd is used. (The tool file can tell you what
type of file some blob is in part by using this magic numbers, though it will of course not
recognize this ad hoc format.) The next 2 bytes are a big-endian short (16-bit) value that
indicates the length of the file. The next bunch of bytes are reserved for future use (another
typical feature of file formats or network protocols). Then bytes 19 and 20 are another big-
endian short that indicates the “jump” or offset in the file where the data is actually stored.
If this jump value is larger then the file size (bytes 3 and 4) then the jump is reduced modulo
the file size.

The data is stored as a length-prefixed string starting at the offset jump (modulo file
size). The first two bytes of jump indicate the length of the data, and the bytes after that
store the actual data.

A C++ program that “prints” the stored data for this file format is available on the
course website:

1One may ask “why would a file format exist with such a bizarre semantics and which renders it so
particularly vulnerable to hash collisions” and indeed it is rather contrived, nevertheless it should not be the
concern for file format designers to consider susceptibility for hash collisions in the designs but rather the
concern of hash function designers to avoid having collisions.

Fall 2025 Page 1



Prof. Reardon Assignment 2 DUE Oct 13th by noon CPSC 526

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/fileformat.cc

You can compile this and run it, passing a filename as the first argument. If the file is
not correctly formatted, then it will hopefully print a useful error message or otherwise just
fail. Feel free to modify it to help you create a well-formatted file, but you should double
check your result with the original program to ensure it is working the same. Some example
files that show the format are available here:

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/ex1.sff

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/ex2.sff

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/ex3.sff

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/ex4.sff

Your submission for this question is submit two different files. These two files must have
the same md5 hash, and you will find the md5 collision useful (indeed, what an unfortunate
choice the file format designed had for the magic number). The collisions are available here:

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/coll1

https://pages.cpsc.ucalgary.ca/~joel.reardon/526/assn/coll2

These files are storing the following collisions, represented in hexadecimal with added
whitespace:

d131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb

7f8955ad340609f4b30283e488832571415a085125e8f7cdc99fd91dbdf2

80373c5bd8823e3156348f5bae6dacd436c919c6dd53e2b487da03fd0239

6306d248cda0e99f33420f577ee8ce54b67080a80d1ec69821bcb6a88393

96f9652b6ff72a70

and

d131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb

7f8955ad340609f4b30283e4888325f1415a085125e8f7cdc99fd91dbd72

80373c5bd8823e3156348f5bae6dacd436c919c6dd53e23487da03fd0239

6306d248cda0e99f33420f577ee8ce54b67080280d1ec69821bcb6a88393

96f965ab6ff72a70

You can download these files and confirm that they have the same MD5 hash with md5sum

yet differ with diff. Using these, perform a length extension attack to have two different
files that appear to “store” different data when read with a tool suited to their format.

The “stored data” for one file shall be “<your ucid> will receive an A+ in CPSC 526”
and the other shall be “<your ucid> will receive a Z- in CPSC 526”. You can use the C++
program to check the output is correct and md5sum to ensure that they have the same hash.

Fall 2025 Page 2



Prof. Reardon Assignment 2 DUE Oct 13th by noon CPSC 526

Question 2: PRNG (12 points)

In class we saw two properties of cryptographically-secure pseudorandom number generators:
prediction resistance and rollback resistance.

Describe two approaches that use a small (e.g., 256-bit) seed to generate a stream of
randomness that

1. achieves rollback resistance but not prediction resistance

2. achieves prediction resistance but not rollback resistance

That is, provide two different approaches that each achieve exactly one of the two desired
properties. You may assume standard cryptographic assumptions hold. It is 6 points for
approach: 2 points for the description of PRNG, 2 points for why it either has or doesn’t
have each of the two properties.

Be sure to express your design clearly (i.e., use pseudocode if necessary). You may use
basic cryptographic functions but just define what they mean. You can use tutorial exercise
style pseudocode as a good idea as to expectations.

Submit your written answer to the assignment 2 dropbox on D2L.

Question 3: Kerberos Forward Secrecy (12 points)

Kerberos does not have forward secrecy as provided for communications between Alice (the
user) and Bob (e.g., the printer). But forward secrecy can still be added after Alice and Bob
have mutually authenticated.

1. What are the long-term secrets in Kerberos? (2 points)

2. What are the short-term secrets in Kerberos? (2 points)

3. Explain why Kerberos does not have forward secrecy. Recall that forward secrecy
is the property that the leak of a long-term secret does not reveal the contents of
communication sessions that were secured by that long-term secret. Be specific about
what data needs to be compromised and what the consequences of it are. (4 points)

4. Augment Kerberos to have forward secrecy for the actual communication between Alice
and Bob. You only need to specify the message sequences for the parts of the Kerberos
protocol that you change (i.e., if Alice’s communication with the TGS is unchanged
then you do not need to specify it). (4 points)

Fall 2025 Page 3


