
Undergraduate Assembly Language Instruction
Sweetened with the Raspberry Pi

Jalal Kawash
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

+1 403 220 6619
jkawash@ucalgary.ca

Andrew Kuipers
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

+1 403 220 6015
amkuiper@ucalgary.ca

Leonard Manzara
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

+1 403 220 3518
manzara@cpsc.ucalgary.ca

Robert Collier
School of Computer Science

Carleton University
Ottawa, Ontario, Canada

+1 613 520 4333
robert.collier@scs.carleton.ca

ABSTRACT
It is widely recognized that motivating students in an
undergraduate assembly language course is a tremendous
challenge, principally because of the perception that the subject
matter is both difficult and tedious. The Raspberry Pi is a small
and inexpensive single-board computer that was created for
educational purposes, and in this paper we describe how we
successfully incorporated this device into the curriculum of an
undergraduate assembly language course. We describe, in detail,
the objectives for this course and the dedicated lab that uses the
Raspberry Pi as an embedded device, and then evaluate the
effectiveness of our approach. Our findings (obtained by
exploring changes in student performance and examining the
results of an engagement/enjoyment survey) strongly indicate that
the introduction of the Raspberry Pi was well received by the
students and contributed positively to their learning outcomes.

Keywords
Computer Science Education, Raspberry Pi, Assembly Language
Programming, Hardware/Software Interface

1. INTRODUCTION
In recent educational practice, computer science students are
typically introduced to programming by learning a high-level
computer language. Although the importance of being able to
program in a high-level language is undeniable, it would be
difficult to argue that learning assembly language is not crucial for
understanding the underlying computer architecture.
Unfortunately, although assembly language remains a
fundamental topic in computer science, novice assembly language
programmers often find the process of programming in it tiresome
and frustrating. This is not surprising, since programming in
assembly is typically a tedious process, and is often described as
"dry" [1], "difficult to learn", and "confusing" [2]. Naturally, this
impression can be exaggerated if the course is concerned with
difficult advanced assembly language programming techniques,
despite the fact that these techniques are considered essential in
many computer science, information technology, and engineering

programs. As a result, post-secondary educators are strongly
motivated to make the process of learning assembly language
more engaging and rewarding for students.

The Raspberry Pi, released in 2012 as an educational tool for
computer science, is an affordable, relatively small device that
contains an ARM11 [6] processor and supports a wide range of
peripherals. Its inclusion of a General Purpose Input/Output
(GPIO) interface [7] makes it especially suitable for teaching a
wide variety of I/O protocols. Our decision to use the Raspberry
Pi in an assembly language programming course was motivated
by the desire to make the process of learning assembly language
more enjoyable for the students, while offering them exposure to a
contemporary architecture (similar to what they may encounter in
today’s ubiquitous mobile devices). It is also our belief that both
seeing and closely working with an actual physical device (as
opposed to an invisible and remote server) will help students
break down the conceptual barrier between software and
hardware. Hence, the main research question this paper intends to
answer is whether the adoption of the Raspberry Pi can improve
both the learning experience and outcomes of students.

The Raspberry Pi is usually equipped with a Linux operating
system, and educational institutions that employ the Pi typically
use it as a stand-alone computer (running Linux). Our approach,
in contrast, is to use the Pi as an embedded device. Programming
for direct hardware control is not possible when there is an
overprotective operating system guarding hardware resources, so
we use a minimal OS (employing only a first-stage bootloader) on
the Pi, which allows students to program the hardware directly.

Although the Raspberry Pi has been adopted as an educational
tool by many colleges (and, in [8], as a motivator for high school
students), the novelty of the device entails that there are only a
few studies that analyse these experiences in depth. For example,
Brock et al. discuss how the Pi is being used across a range of
secondary-school computer courses [5], while Foltz discusses how
it is used to teach network administration at the undergraduate
level [9]. Although Hooper discusses (at an introductory level)
how to program the Raspberry Pi at a low level using C++ and
ARM assembly in a workshop [10], to the best of our knowledge
our use of the Raspberry Pi to teach low-level programming in an
undergraduate computer science course is unique.

There are alternatives to the Raspberry Pi for teaching the
hardware/software interface (for example, embedded devices such
as the Arduino or FPGAs have been used for this purpose), but
these devices often do not feature a comparable set of built-in
peripheral interfaces. Also, it is possible to use an architecture that
supports an operating system with a "real-mode" (allowing direct
access to hardware) and the course described in this paper evolved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '16, March 02-05, 2016, Memphis, TN, USA
© 2016 ACM. ISBN 978-1-4503-3685-7/16/03…$15.00
DOI: http://dx.doi.org/10.1145/2839509.2844552

498

fr
x
in
im

T
S
ty
c
b
o
(
v
th
f

2
T
3
f
s
f
N
th
u
B
c
a
w
in
lo
h
th

T
W
r
s
o
s
e
w

T
th
A
E
a
“
s
A
r
to
r
d
p
it
th
r
m
f
w
w

from a course th
x86 architecture
ndicate that the
mproves both stu

The remainder o
Section 2 and Se
ypical hardware

course objectives
brief description
of the course (f
and quantitative

version of the co
he Raspberry Pi

final discussions

2. THE CO
The subject of th
359) course at th
for students pu
science at the Un
for the third-y
Networks, and P
he course title, t

undergraduate c
Bachelor’s degr
course, students
and general com
while in CPSC
nterface. Studen
ogic design, m

handling, and ha
hese topics, this

The enrollment i
Winter 2015 s
espectively, wit

students per lab t
of lecture time co
sessions, designe
experience with
were conducted b

The main studen
he course is an

ARM assembl
Entertainment Sy
and an HDMI m
“bare metal” (o
system), in a ma
Although the g
epresentative ex
o traverse a
epresentation of

draw a title scree
permitted a finit
tems in order to
he program mus
eceive input fr

moving a chara
failure messages
were evaluated o
were given the op

at used Window
[3]. Nevertheles
Raspberry Pi is
udent engageme

of this paper is
ection 3 are use

e/software setup
s are discussed i
of the format a

for comparison)
e) assessment o

ourse, and detail
i is discussed an
presented in Sec

OURSE
his paper is the
he University of
ursuing an und
niversity of Cal

year courses C
Principles of Ope
this is the secon
courses, both o
ree in Comput
are exposed to

mputer architec
359 the empha

nts enrolled in t
icroarchitecture
ardware I/O. It
paper is concern

in the course for
semesters were
th students divi
tutorial. A typic
omplemented by
ed to parallel the
the Raspberry P
by graduate teac

nt deliverable in
n interactive vi
y language,
ystem (SNES) c

monitor for outpu
on the ARM p
anner that is typi
game itself wou
xample would be

maze. In add
f the maze itself
en and menu ele
te number of ac
o proceed, all of
st track and rep
rom the SNES
cter), and prese
as required. It s

on the quality of
ption to work in

ws 98 running in
ss, the results of
a viable alterna

ent and performa

s organized int
ed to describe th

of a workstatio
in Section 4 and
and topics of the
. Section 6 giv
of student perf
ed student feedb

nd analyzed in S
ction 8 to conclu

Computing Ma
f Calgary. It is

dergraduate deg
gary, and is a p

Computer Struc
erating Systems.

nd of a pair of ea
of which are m
er Science. In
assembly langu

cture and organ
asis is on the h
this course are e

design, interru
should be note

ned primarily wi

r the Fall 2013,
 61, 112, an
ided into group

cal week consiste
y 100 minutes of
e lectures by pro
Pi in a specialize
ching assistants.

n the Raspberry
deo game deve
using a Su

controller [12] a
ut. The game is r
processor witho
ical for many em
uld vary betwe
e a game that re
dition to the
f, the students w
ements. The play
ctions and woul
f which compris
port to the user.

controller (op
ent the player
should also be n
f their code, and
groups of up to

n real-mode on th
f our investigatio
ative platform th
ance.

o seven section
he course and th
on in our lab. Th
d Section 5 gives
e previous versio
ves a comparativ
formance in eac
back on the use
ection 7, with o

ude the paper.

achinery II (CPS
a required cour

gree in comput
prerequisite cour
ctures, Comput
. As suggested b
arly (second-yea
mandatory for

the prerequisi
uage programmin
nization concept
hardware/softwa
exposed to digit
upts and interru
ed that, out of a
ith hardware I/O

Winter 2014, an
nd 120 student
ps of at most 2
ed of 150 minut
f lab time. The la
viding a hands-o

ed lab (Section 3

Pi component
eloped entirely
uper NintendoT

s an input devic
required to run o
out an operatin
mbedded system
een semesters,
equired the play
actual graphic

would also need
yer would only b
ld need to colle
ses game data th

The game wou
pening doors an
with success an

noted that studen
d that the studen
three members.

he
on
hat

ns.
he
he
s a
on
ve
ch
of

our

SC
rse
ter
rse
ter
by
ar)

a
ite
ng
ts,

are
tal

upt
all

O.

nd
ts,
22
tes
ab
on
3),

of
in

TM
ce,
on
ng

ms.
a

yer
cal
to
be
ect
hat
uld
nd
nd
nts
nts

3. LA
Writing
a set o
directly
such as
will be
a comp
debugg
be perf
problem
interfac
student
and pro
does no
softwar
created
host co
with th
both th

3.1 H
In orde
for the
cross c
transfer
program
The ad
includin

a) Ra
b) Cu
c) Se
d) Su
e) HD
f) US

Much
commu
Output
created
various
the hos
debugg
connec
Raspbe
interfac
across
text-ba
connec

AB SETUP
g bare-metal ass
of challenges no
y on a Pi equip
s Linux. The pr
 running a minim

piler and system
ging cannot take
formed on a hos
m. While the
ce, it is unreaso
ts to write a US
oviding a librar
ot help them und
re level. To sol

d with 30 studen
omputer and a s
he Raspberry Pi
he hardware and

Hardware S
er to facilitate s
Raspberry Pi, th

compiling a pro
rring compiled
ms running on t
dditional hardw
ng the host comp

aspberry Pi
ustom Breakout
eggerTM JLink E
uper NintendoTM

DMI Interface
SB to TTL Seria

Figure 1. W

of the hardwa
unicate over the

(GPIO) interfac
d to connect the
s devices used i
st computer are t
ged using the
cts to the host
erry Pi across th
ce (f) also conne
the GPIO inter
sed serial input

cted to the GPI

P
sembly code for
ot encountered w
pped with a full
rincipal difficul
mal operating sy

m-level I/O. Con
 place on the de
st computer. Ba
Raspberry Pi

onable to expect
SB keyboard or
ry or pre-made
derstand how in
lve these challe
nt workstations,

suite of supporti
i. The details o
software perspe

Setup
students writing
he workstations
ogram targeted
programs to th

the Raspberry P
ware connected
mputer) is shown

Board
EDU Debugger [
M Entertainment

al Interface

Workstation H

are used in th
e Raspberry Pi'
ce, and so a cust
Raspberry Pi's

in the workstati
transferred to the
JLink EDU d

t computer's U
he GPIO interfa
ects the host co

rface, and provid
and output. The
IO interface, a

the Raspberry P
when developin
l-featured opera
ty is that the R
ystem that does

nsequently, comp
evice itself, but i
asic user input a
is equipped w
second-year un
mouse driver i

driver to handle
nput is handled a
enges, a dedicat
, each of which
ing hardware tha
of these worksta
ctives, are descr

g bare-metal ass
need to provide
to the ARM a

he Raspberry Pi
Pi, and facilitatin

to the Raspbe
in Figure 1, and

11]
System (SNES)

ardware Suite.

he workstation
's General Purp
tom breakout bo
26-pin GPIO h

ion. Programs c
e Raspberry Pi a

debugging unit
USB interface
ce. The USB to

omputer to the R
des a means of

e SNES controlle
and provides an

Pi introduces
ng programs
ating system
Raspberry Pi

not provide
pilation and
instead must
also poses a

with a USB
ndergraduate
n assembly,
e user input
at the lowest
ted lab was
h includes a
at interfaces
ations, from
ribed below.

sembly code
e support for
architecture,
, debugging
ng user I/O.

erry Pi (not
d includes:

Controller

s needs to
pose Input /
oard (b) was
eader to the

compiled on
and remotely

(c), which
and to the

o TTL serial
Raspberry Pi
f performing
er (d) is also
n additional

499

method of user input. Finally, the Raspberry Pi's native HDMI
interface (e) is connected to a monitor, which provides a means of
graphical output from the Raspberry Pi.

3.2 Software Setup
Writing bare-metal assembly for the Raspberry Pi involves a
different software setup than would be used to write and run
programs directly on the device itself. Given that the Raspberry Pi
will not be using a full-featured operating system (that is, instead
of Linux we use a simple operating system that does not provide
facilities such as text editors, compilers, or debuggers), students
must edit and compile their programs on a different computer
system, herein referred to as the host. The compiler on the host
must be able to cross-compile source code to produce executable
binaries that run on the Raspberry Pi. Debugging provides an
additional challenge, since the host debugger is interacting with a
program running on a remote system.

The software setup used on the workstations involves a
distribution of the Linux operating system. A version of the GNU
Compiler Collection (gcc), built to target the Raspberry Pi's
ARM11 architecture, was installed on the workstations, providing
a cross-platform compiler and debugger. Additionally, the GNU
Debugger (gdb) Server provided by SeggerTM (JLinkGDBServer)
was installed on the host computers to allow communications
between the gdb debugging client on the host and the JLink EDU
remote debugging unit connected to the Raspberry Pi.

In order to establish a connection between the JLink EDU remote
debugging unit and the Raspberry Pi, the GPIO lines used for
JTAG communication must be set to the correct mode using a
sequence of software commands. To accomplish this, a "minimal"
kernel image with just enough code to enable the JTAG GPIO
lines is compiled by the students and copied to the SD card from
the host computer, and the Raspberry Pi is powered on with this
SD card inserted. One difficulty here is that, at the time that this
paper was authored, the details of the first-stage bootloading
process were not currently publicly available, so students were not
able to recreate this stage of the bootloading process themselves.
To solve this problem, an SD card is first written with the original
Raspbian distribution (available on the Raspberry Pi website, and
which includes the first-stage bootloader), and then modified by
overwriting the kernel image file used in the second-stage of the
bootloading process with the "minimal" kernel image.

Once the Raspberry Pi is powered on with an SD card containing
the "minimal" kernel image, the JLinkGDBServer can be started
on the host computer. After a successful connection has been
made and the debugger server is running, the students can start the
ARM-targeted gdb client using a kernel image they have
compiled with the ARM-targeted compiler, and establish a remote
debugging connection to the JLinkGDBServer instance. At this
point, the student executes a command in the gdb client to upload
the kernel image to the Raspberry Pi's memory, sets the Raspberry
Pi's program counter register to the beginning of the kernel image,
and continues execution on the device. If successful, the student's
new kernel image will now be running on the device.

3.3 Additional Considerations
While the overall experience of working with the Raspberry Pi
was generally advantageous to students, it should be noted that the
specialized lab we created came with a price tag of more than
$30,000 (CAD) for about 34 workstations (including 4
workstations for instructional staff). Although this cost might be
considered prohibitive for some institutions, it is worth noting that
the lab was constructed with completely new equipment,

including new top-of-the-line host machines and dual monitors
(one for the host and a HDMI monitor for the Raspberry Pi).
Consequently, it should be noted that this price tag could be
reduced substantially by simply equipping an existing lab of host
machines; the add-on price for converting an existing lab to make
it Raspberry Pi-ready can be very minimal, and would include
only the price for HDMI monitors (if necessary), JLink devices,
and a few inexpensive accessories. Furthermore, there are cheaper
display options than the HDMI monitors used in our lab that can
be used with the Raspberry Pi's RCA video output.

The cost of the Raspberry Pi itself and its accessories is very low;
the price for an assembled kit (which includes a power supply
adapter, SIM card, cables, and protective case) was about $85
(CAD) in Winter 2015. Note that all students were required to
purchase the Pi and accessories when registering for the course.

It should also be noted that, with the enrollment in the winter
semester exceeding 100 students, the students were struggling to
find lab time and space during peak times close to assignment due
dates. Not being able to work from home (due to the specialized
hardware required) was a clear disadvantage to students, but
duplicating a lab workstation at home incurs a relatively low cost,
and can be encouraged in future offerings. Students would need
only an extra HDMI screen, a JLink EDU device, and our locally-
manufactured breakout board.

4. COURSE OBJECTIVES
As this paper describes the use of the Raspberry Pi for assembly
language instruction, it is worth noting that several Raspberry Pi
topics are considered course objectives, including (but not limited
to) the following:

Advanced ARM Assembly Programming: Students are exposed
to stacks, the concept of subroutines (as implemented in assembly
language), two-dimensional arrays, and interrupt service routines.

General-Purpose Input/Output: GPIO is a well-known
mechanism used to provide flexible I/O for microcontrollers.
GPIO allows the students to connect a wide range of I/O devices
to the Raspberry Pi. However, a substantial amount of
programming is required to write device interface functions (i.e.,
GPIO is not plug-and-play). Students are expected to become
proficient in the use of GPIO registers, including those that set the
function for a GPIO line (e.g., input, output, or a special function)
and those that read or set the values of the GPIO lines [7].

Universal Asynchronous Receiver/Transmitter Protocol:
UART is a low speed serial protocol used ubiquitously for simple
communication between devices. The Raspberry Pi provides
support for UART (and a reduced implementation called mini-
UART) through its GPIO interface. The protocol is relatively easy
to present to students, and students are required to implement a
driver for a generic UART device from scratch.

Video Programming: The Raspberry Pi provides support for
video programming via a frame-buffer architecture accessed
through memory-mapped I/O (that is, the frame-buffer is accessed
through memory load and store instructions). On the Raspberry
Pi, the buffer is initialized through a mailbox interface, and is
used to establish communication between the ARM core and the
video core (or GPU). A suite of registers in addition to RAM is
used for this communication, and the use of these registers, along
with the protocol for initializing the frame-buffer [7,13], are both
areas in which the students must become proficient.

Interrupts and Exceptions: The ARM architecture has a number
of different execution modes, and software or hardware

500

e
p
s
u
P
le
e

5
It
s
p
W
m
d
o
s
p
v
o
o
a

T
s
th
li
th
w
a
s
th

A
W
a
r
A
th
o
a
m
c
r
th
e

T
la
U
r
th
c
e
r

6
A
o
p
w
le
p
m
s
d

exceptions (i.e.,
processor. Writin
students to unde
use the Current
Program Status R
earn to program

event such as a ri

5. PREVIO
t is worth noting

similar topics u
predecessor cour
Windows 98. Th
mode, which en
develop an intera
of this course,
students had to w
privileged operat
versions of the W
option, and oth
overprotective an
access the hardw

The nature of
significantly whe
he predecessor c
ibrary (the VES
hat they work w

was also necessa
a resolution of
specialized PS/2
hey program and

As noted prev
Windows 98 do
and, consequent
equired a specia

Although this wa
here were two s

of a substantial
and still applica
many students r
course was rele
eceived from th
hem were dis

environment that

The second issue
ab that consis

Unsurprisingly,
epair and find s
his, we resorted

course [3], but w
experience the s
ather than worki

6. COMPA
According to the
of Calgary, letter
point values betw
worth 4.0, A- wo
etter grades as

performance on
module are map
scheme, it is po
different categor

interrupts) cha
ng and registerin
erstand the vecto
Program Status
Register (SPSR)

m an interrupt ser
ising or falling e

OUS VERSI
g that the previo
using a differe
rse was based o
his setup allowed
nabled direct a
active video gam
remains a sign

write specialized
ting system call

Windows operati
her operating
nd do not allow

ware directly.

the video gam
en this course w
course, students
SA BIOS Exten

with both port-ma
ary for students t

1024 × 768
2 keyboard and/
d register their o

viously, version
not permit stude
tly, the previo
alized lab (i.e., x
as suitable to fu
ignificant issues
explanation tha

able (regardless
reported that th
evant to current
he students indic
scouraged when
t they literally ch

e that arose was
ted of x86 m
it was becomin
spare parts for a
d to DOSBox [1
we were ultimate
students were re
ing directly with

ARATIVE A
e undergraduate
r grades betwee
ween 0.0 and 4.
orth 3.7, B+ wo
ssigned to eac
the exam that
pped to grade

ossible to calcul
ries of students.

ange the execut
ng exception han
or table architec
s Register (CPSR
) on the ARM C
rvice routine to h
edge on a GPIO

ON
ous version of th
ent platform. T
on an Intel x86
d students to wo
access to hardw
me (which, in th
nificant course

d device drivers w
s. Unfortunately
ing system no lo
systems (e.g.,
developers to w

me deliverable
as adapted to the

s needed to use
nsion (VBE) [1
apped and memo
to work with XG
with 256 colo

/or mouse drive
own interrupt han

ns of Window
ents to work in r
us version of
x86 machines w
ullfil the objectiv
s with this lab se
t course concep
of the computi

hey were not co
t computing pra
cated that a sign
n working wi
haracterized as "

s related to the s
machines runnin

g progressively
any failing mac
7] in subsequen

ely dissatisfied w
eceiving while u
h the actual hardw

ASSESSMEN
grading system

en F and A+ are
0, inclusively (w

orth 3.3, etc.) Co
ch student for
followed the x8
point values a

late mean grade
Since the Rasp

tion mode of th
ndlers requires th
cture, and how
R) and the Save
CPU [6]. Studen
handle a hardwa
line.

his course covere
The lab for th
platform runnin

ork in real addre
ware. In order
he current iteratio

deliverable), th
without relying o
y, the more rece
onger provide th

Linux) are to
write programs th

did not chang
e Raspberry Pi.
a low-level vide

15]), necessitatin
ory-mapped I/O.
GA monitors (wi
ors), and develo
ers (requiring th
ndlers).

ws subsequent
real address mod
the course al

with Windows 98
ves of the cours

etup. First, in spi
pts were univers
ing environmen
onvinced that th
actices. Feedbac

nificant number
ith a computin
ancient".

sustainability of
ng Windows 9

more difficult
hines. To addre

nt offerings of th
with the quality
using an emulat
ware.

NT
m at the Universi
e mapped to grad
with A's and A+
onsequently, if th

their respectiv
86 / ARM cour
according to th
e point values f
pberry Pi was fir

he
he
to
ed
nts
are

ed
he
ng
ess
to
on
he
on
ent
his
oo
hat

ge
In
eo
ng
 It
ith
op
hat

to
de
so
8).
se,
ite
sal
nt),
he
ck
of
ng

f a
98.
to

ess
he
of

tor

ity
de
+'s
he
ve
rse
his
for
rst

adopted
student
be div
Compu
and tho
adopted
and x86
topics.
highlig
same in
we reco
of spee
platform

In the
categor
Septem
categor
after Se
values,
standar
mean g
student
grade o
course
comple
the mar

Fi

It was
testing
statistic
plots in
student
normal
line) an
to demo

This te
signific
interpre
very p
conson
discuss

7. SU
Student
to parti
enjoym
learning
student
337 stu

d for this course
ts that have com
vided into two
uting Machinery
ose that comple
d. We should n
6 material was te
The marks pres

ghted that curren
nstructor. In bot
ommended in ea
ech of each assem
m and the lab we

available data,
ry (i.e., those th

mber 2012 and A
ry (i.e., those th
eptember 2013).
 we observe a

rd deviation) for
grade point value
ts in the latter.
of between C+ a
with the x86, a

eted the course
rks for each pop

igure 2. Distribu

necessary to te
whether the d

cally significant
n Figure 3, the
ts that complete
l (n.b., an R2 of
nd, thus, require
onstrate statistic

est showed that
cant (p-value <
et it as evidence
positive impact
nant with the
sed in the follow

URVEY RE
ts registered und
icipate in a volun

ment, learning
g. We have rece
ts in two consec
udents (i.e., an ov

e in the Fall sem
mpleted this cours
o categories: t
y II while the x
eted the course s
note that in both
ested in an exam
sented here are

nt and previous v
th formats, no te
ach case a book
mbly language (
ere the only maj

, there were 13
hat took the cou
April 2013) and
hat took the cou
. After mapping

mean grade po
r the students in
e of 2.986 (0.730
These results c
and B- for the s

and a mean lette
with the Raspb

pulation of studen

ution of the AR

est the normality
difference betwe
t. As evidence
distribution of g

ed the course w
f 0.9085 for the
ed an unpaired, n
cal significance.

the difference
0.0001), and s

e that the use of
on student pe

feedback provi
wing section.

ESULTS
der the new form
ntary, anonymou
experience, mo
eived a total of
cutive semesters
verall response r

mester of 2013,
se in the last thre
those that com
86 architecture
since the Raspb
h course version
m separate from o

for this exam. I
versions were ta
extbooks were r
that covered the

(x86 and ARM)
or changes.

38 students in
urse with the x
d 319 students i
urse with the Ra
the letter grades

oint value of 2
n the former cate
0 standard devia
correspond to a
students that co
er grade of B fo
erry Pi. The dis
nts is plotted in F

RM/x86 Exam G

y of these data
een the mean
d by the quan
grades across th

with the x86 wa
quantile-quantil
nonparametric s

was extremely
o it is not unre

f the Raspberry P
erformance. Th
ided by the s

mat of the course
us survey that as
otivation, and
198 valid instru
, from a total en
rate of 58%).

the body of
ee years can

mpleted the
was in use,

berry Pi was
ns, the ARM
other course
It should be
aught by the
required, but
e basic parts
. Hence, the

the former
x86 between
in the latter
aspberry Pi,
s to numeric

2.542 (0.846
egory, and a
ation) for the

mean letter
ompleted the
or those that
stribution of
Figure 2.

Grades.

sets before
grades was

ntile-quantile
he cohort of
as not quite
le plot trend
student t-test

statistically
easonable to
Pi has had a

his result is
students, as

e were asked
ssessed their
independent

uments from
nrollment of

501

7
T
T
r
th
A

T
r
w
th
P
th
s

S

N

D

S
D

T
r
p
lo
s
r

T
tw
(
s
s
1
A
b

Figure 3. Nor

7.1 Quantit
Tables 1 and 2 s
To clarify, these
esponses associ
he Likert scale

Agree, Neutral, D

Table 1 shows
esponded with

working with the
he students felt v

Pi, with a substa
heir learning w

similarly positive

Ite

I enjoyed w
Raspb

Strongly
Agree

22.73%

Agree 43.43%

Neutral

Disagree 7.58%

Strongly
Disagree

5.56%

Table 1. Surv

Table 2 presents
eported concern

participants resp
ow-level progra

studies). In all ca
eacted positively

To facilitate furth
wo classes: the "
a), and the "N

strongly disagree
scale responses o
1 and 5 inclusive
Agree" and "Str
be subjected to a

rmality Testing

tative Summ
show the basic fr
e tables show th
ated with each
 used on the i

Disagree, and Str

the proportion
each of the dif

e Raspberry Pi.
very positively a
antial 82.32% m
was enhanced.
e reactions conce

m (a)
working on the
berry Pi.

T
enh

66.16%
29.

53.

20.71%

13.13%

1.

1.

vey Responses C

 similar data for
ning pursuing fu
onded with agre
amming, game
ases, the majorit
y to the use of th

her analyses, stu
"Enjoyers", who

Non-Enjoyers", w
ed with the sam
on the other item
e, with 1 and 5 a
ongly Disagree"
dditional statisti

with Quantile-Q

mary
frequency statisti
he fraction of s
of the five diff

instrument (i.e.,
rongly Disagree

of the survey
fferent response
It is clear from

about the impact
majority reportin

The other resp
erning enjoymen

Item (b)
he use of the RPi
anced my learning.

.29%
82.32%

.03%

15.66%

.01%

2.02%
.01%

Concerning the

r items about th
uture studies. Th
eement for each

programming,
ty of the survey
he Raspberry Pi.

udy participants w
o agreed or stron
who were neutr

me item. By tran
ms into numerica
assigned to respo
", respectively),
ical analyses.

Quantile Plots.

ics for the surve
survey participa
ferent values fro
, Strongly Agre
).

participants th
es to items abo

m these results th
t of the Raspber
ng agreement th
ponses expresse
nt and motivation

Item (c)
The use of the RPi
motivated me...

23.74%
67.17

43.43%

24.75

5.05%

8.08
3.03%

Raspberry Pi.

he feeling studen
he majority of th

of the items (i.e
and independe

y participants hav

were grouped in
gly agreed to ite
ral, disagreed,

nslating the Like
al values (betwee
onses of "Strong

the results cou

ey.
ant
om
ee,

hat
out
hat
rry
hat
ed
n.

%

5%

%

nts
he
e.,

ent
ve

nto
em
or
ert
en

gly
uld

Strongly
Agree

Agree

Neutral

Disagree

Strongly
Disagree

Tabl

When
Enjoye
that the
experie
(4.29)
agreem
corresp
Althoug
feeling
differen
statistic

Similar
Raspbe
motivat
the Enj
once ag
to agre
from th
neutrali
translat
signific
previou
who en
contrib

7.2 Q
The sur
their ch
qualitat
on whic
Disagre
Pi") ind

The fir
dissatis
workin
this cle
nice; h
instabil
This stu
modern
strongly
stated:
super n
explain
Raspbe

The se
itself a
work f

Item (d)
I would like to lear
more about low‐lev

programming.

16.67%
52.5

35.86%

18.6

18.69%

28.7
10.10%

le 2. Survey Res

comparing the
ers, item (b) was
e use of the Rasp
ences. The mea
corresponds to

ment, while the
ponds to a resp
gh the mean res
"positively" abo

nce between the
cally significant

rly, in item (c) (
erry Pi contrib
tion), the mean t
joyers and the N
gain, that the me
ement / strong a
he Non-Enjoye
ity and agreem
ted responses
cant (p-value <
usly explored ite
njoyed using the
buted to both enh

Qualitative
rvey participants
hoices in a free-
tive analysis. Th
ch the students r
ee" with item (a)
dicated the prese

rst theme saw
sfaction about t
ng environment.
early: "The fact
however, the exp
lity, over-compli
udent goes on to
n day technolo
y disagreed
"ARM is a cur

novel, but painfu
ns: "The metho
erry Pi was over

econd theme wa
and the scarcity
from home. A

n
vel

Item (e
I would like t
more about
programm

53%
38.89%

32.32%

69%

79%

7.07%

7.07%

sponses Concer

responses of th
s used to assess w
pberry Pi enhanc
an translated re
a response betw

e value from
ponse between
sponses would c
out their learnin
e mean translated
(p-value < 0.000

(assessing wheth
buted positively
translated respon
Non-Enjoyers r
ean response fro
agreement, in co
ers, correspondin
ment. The diffe
was, once aga

< 0.0001) and f
em (b), the surve
e Raspberry Pi t
hanced learning a

Summary
s were also give
-form format, an
his analysis, res
reported "Neutra
) (i.e., "I enjoye
ence of two unde

the majority
the "fragility" a
One student (w

that we’re work
perience was te
ication, and J-L
o say: "The relev
ogy is interestin

with the qu
rrent technology
ul due to hic-ups
od for commun
r complicated by

as centered on t
of lab space an
representative s

e)
to learn
t game
ming.

I would
indepe
with s

71.21%
24.75%

35.86%

14.65%

14.14%

10.61%

9.09%

rning the Future

he Enjoyers wit
whether the part
ced their individ
esponse from th
ween agreement

the Non-Enjoy
neutrality and

characterize bot
g with the Raspb
d responses wer
01).

her the students
y towards their
nses were 4.08 a
respectively. Th
m the Enjoyers

ontrast to the me
ng to a respon
erence between
ain, extremely
for both this ite
ey results indicat
thought that the
and improved m

en the opportunit
nd these were su
stricted to those
al", "Disagree", o
d working on th
erlying themes.

of these stude
and "awkwardn

with a neutral ra
king on relevant
erribly tarnished
ink being absolu
vance of the Rasp
ng." Another s
uestion under
y and the Rasp
s in the system.
nication/work w

y J-Link."

the workload of
nd time, or the
student states:

Item (f)
d like to pursue
ndent learning
similar topics.

%
60.61%

%

19.70%

%

19.70%
%

e Studies.

th the Non-
ticipants felt

dual learning
he Enjoyers
t and strong
yers (3.69)
agreement.

th groups as
berry Pi, the
re extremely

felt that the
r individual
and 3.24, for
is indicates,
corresponds

ean response
nse between
n the mean

statistically
em and the
te that those

e experience
motivation.

ty to explain
ubjected to a

instruments
or "Strongly

he Raspberry

ents express
ness" of the
ating) stated
hardware is
d by system
utely awful."
pberry Pi to
tudent who

discussion
pberry Pi is
S/he further
with/on the

f the course
inability to

"Although I

502

enjoyed the idea of the RPi, the projects consumed a lot of my
time, more than any other course by far. […] It was interesting to
work below the OS […], but the projects required a lot of
troubleshooting and we could only work on the RPi on campus."

8. CONCLUSION
Teaching assembly language programming at the undergraduate
level is often challenging, and this can often be attributed to the
perceptions (of the students) that the topic is dull and tedious.
Earlier attempts to offset this bias (in the predecessor Computing
Machinery II course discussed herein) included the incorporation
of video game development to introduce a "fun factor" into the
student experience. While we have retained this element in our
present course design, we looked at incorporating a contemporary
platform that students would find more relevant to the current
state of the computer industry. The use of a credit card-sized
computer with an ARM processor served this purpose, largely
because of prevalence of mobile devices in the students' daily
lives. In this paper, we show that a significant majority of the
students were more motivated to learn about the
hardware/software interface and assembly language due to the use
of the Raspberry Pi as a learning platform. Another majority also
indicated that the Raspberry Pi improved their learning experience
and enjoyment of the topic.

These results, compiled from the "self-assessments" provided by
the students on the survey instruments, closely align with our own
quantitative analysis of student performance. We found that there
was a significant increase in mean grade point value for the exam
associated with this module of the Computing Machinery II
course when the course switched to the Raspberry Pi from the x86
platform. Furthermore, a reduced standard deviation (in the
context of a greater mean grade value and in conjunction with a
visual inspection of the distributions from Figure 2) indicates that
fewer students are being "left behind" in this challenging subject.

On the task of improving the experience further, it should be
noted that the Raspberry Pi seemed to convince only about 30%
of the surveyed students to pursue future independent learning
about low-level programming. Although this is certainly a
respectable result, the task of increasing this value further remains
daunting. This result raises the following question: If a student
enjoys programming with assembly on the Raspberry Pi and
indicates that this was a memorable learning experience, why
would they remain unconvinced to learn more about the subject
independently, and what can be done to address this?

Finally, while the experience was generally advantageous to a
large majority of students, qualitative analysis also indicated two
areas for improvement: the "unfriendly" development
environment, and the accessibility to the lab. There is not much
that can be done to address the perception of the development
environment as "unfriendly", since cross-compilation and the use
of the JLink debugging device is, at the moment, a necessary
complication. Improving lab access is also difficult, since
increasing the size of our lab facilities requires finding new space
when space is scarce, and expending more money. One possible
solution is to provide help and resources for students who wish to
duplicate the development environment on a home computer. The
additional cost to students is relatively minor (and, of course,
entirely optional if they would rather work on campus).

There will always be trade-offs when choosing particular
platforms to achieve general pedagogic aims. As we have shown,

the use of a specific platform to teach general concepts by
exposing them to real-world experiences can be very beneficial to
students, but, special care must be taken to ensure that "platform-
specific details do not swamp pedagogic objectives." [14]

9. ACKNOWLEDGMENTS
Our thanks go to the students of CPSC 359 who took part in this
study. We also thank the anonymous reviewers.

10. REFERENCES
[1] C. Zilles. 2005. SPIMbot: an engaging, problem-based

approach to teaching assembly language programming. In
Proc. of the 2005 workshop on Computer architecture
education: in conj. with the 32nd Int’l Symp. on Computer
Architecture (WCAE '05). ACM, New York, NY, USA.

[2] D. Crookes. 1983. Teaching Assembly-Language
Programming: A High-Level Approach. Software
Microsystems, vol. 2, no. 2, pp. 40-43.

[3] J. Kawash and R. Collier. 2012. Using Video Game
Development to Engage Students of Assembly Language
Programming. In Proc. of the 14th annual ACM SIGITE
conf. on Information technology education (SIGITE '13).
ACM, New York, NY, USA, 71-76.

[4] www.raspberrypi.org

[5] J. D. Brock, R. F. Bruce, and M. E. Cameron. 2013.
Changing the world with a Raspberry Pi. J. Comput. Sci.
Coll. 29, 2 (December 2013), 151-153.

[6] ARM. 2010-2011. ARM Compiler Toolchain, Using the
Assembler (pages 3 to 21).
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473c/
DUI0473C_using_the_arm_assembler.pdf

[7] Broadcom Corporation.2012. BCM 2835 ARM Peripherals.

[8] J. Black, J. Brodie, P. Curzon, C. Myketiak, P. W. McOwan,
and L. R. Meagher. 2013. Making computing interesting to
school students: teachers' perspectives. In Proc. of the 18th
ACM conf. on Innovation and technology in computer
science education (ITiCSE '13). ACM, New York, NY,
USA, 255-260.

[9] C. Bryan Foltz. 2014. Network administration with the
Raspberry Pi. J. Comput. Sci. Coll. 29, 5 (May 2014), 66-67.

[10] W. H. Hooper. 2013. Easy as Raspberry Pi: an inexpensive
platform for machine language instruction. J. Comput. Sci.
Coll. 29, 1 (October 2013), 102-103.

[11] www.segger.com/jlink-debug-probes.html

[12] www.gamefaqs.com/snes/916396-snes/faqs/5395

[13] Broadcom Corporation. VideoCore® IV 3D Architecture
Reference Guide.2013.

[14] Joint Task Force on Computing Curricula, ACM and IEEE
Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. ACM, New York, NY, USA.

[15] VESA. Retrieved 2013/05/20 from: www.vesa.org

[16] DOS Protected Mode Interface (DPMI) Specification:
Version 0.9 Printed 1990/07/26. Retrieved 2013/05/20 from:
http://homer.rice.edu/~sandmann/cwsdpmi/dpmispec.txt

[17] DOSBox, an x86 emulator with DOS. Retrieved 2013/05/20
from www.dosbox.com

503

