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ABSTRACT 
It is widely recognized that motivating students in an 
undergraduate assembly language course is a tremendous 
challenge, principally because of the perception that the subject 
matter is both difficult and tedious. The Raspberry Pi is a small 
and inexpensive single-board computer that was created for 
educational purposes, and in this paper we describe how we 
successfully incorporated this device into the curriculum of an 
undergraduate assembly language course. We describe, in detail, 
the objectives for this course and the dedicated lab that uses the 
Raspberry Pi as an embedded device, and then evaluate the 
effectiveness of our approach. Our findings (obtained by 
exploring changes in student performance and examining the 
results of an engagement/enjoyment survey) strongly indicate that 
the introduction of the Raspberry Pi was well received by the 
students and contributed positively to their learning outcomes.  
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1. INTRODUCTION 
In recent educational practice, computer science students are 
typically introduced to programming by learning a high-level 
computer language. Although the importance of being able to 
program in a high-level language is undeniable, it would be 
difficult to argue that learning assembly language is not crucial for 
understanding the underlying computer architecture. 
Unfortunately, although assembly language remains a 
fundamental topic in computer science, novice assembly language 
programmers often find the process of programming in it tiresome 
and frustrating. This is not surprising, since programming in 
assembly is typically a tedious process, and is often described as 
"dry" [1], "difficult to learn", and "confusing" [2]. Naturally, this 
impression can be exaggerated if the course is concerned with 
difficult advanced assembly language programming techniques, 
despite the fact that these techniques are considered essential in 
many computer science, information technology, and engineering 

programs. As a result, post-secondary educators are strongly 
motivated to make the process of learning assembly language 
more engaging and rewarding for students. 

The Raspberry Pi, released in 2012 as an educational tool for 
computer science, is an affordable, relatively small device that 
contains an ARM11 [6] processor and supports a wide range of 
peripherals. Its inclusion of a General Purpose Input/Output 
(GPIO) interface [7] makes it especially suitable for teaching a 
wide variety of I/O protocols. Our decision to use the Raspberry 
Pi in an assembly language programming course was motivated 
by the desire to make the process of learning assembly language 
more enjoyable for the students, while offering them exposure to a 
contemporary architecture (similar to what they may encounter in 
today’s ubiquitous mobile devices). It is also our belief that both 
seeing and closely working with an actual physical device (as 
opposed to an invisible and remote server) will help students 
break down the conceptual barrier between software and 
hardware. Hence, the main research question this paper intends to 
answer is whether the adoption of the Raspberry Pi can improve 
both the learning experience and outcomes of students.  

The Raspberry Pi is usually equipped with a Linux operating 
system, and educational institutions that employ the Pi typically 
use it as a stand-alone computer (running Linux). Our approach, 
in contrast, is to use the Pi as an embedded device. Programming 
for direct hardware control is not possible when there is an 
overprotective operating system guarding hardware resources, so 
we use a minimal OS (employing only a first-stage bootloader) on 
the Pi, which allows students to program the hardware directly. 

Although the Raspberry Pi has been adopted as an educational 
tool by many colleges (and, in [8], as a motivator for high school 
students), the novelty of the device entails that there are only a 
few studies that analyse these experiences in depth. For example, 
Brock et al. discuss how the Pi is being used across a range of 
secondary-school computer courses [5], while Foltz discusses how 
it is used to teach network administration at the undergraduate 
level [9]. Although Hooper discusses (at an introductory level) 
how to program the Raspberry Pi at a low level using C++ and 
ARM assembly in a workshop [10], to the best of our knowledge 
our use of the Raspberry Pi to teach low-level programming in an 
undergraduate computer science course is unique. 

There are alternatives to the Raspberry Pi for teaching the 
hardware/software interface (for example, embedded devices such 
as the Arduino or FPGAs have been used for this purpose), but 
these devices often do not feature a comparable set of built-in 
peripheral interfaces. Also, it is possible to use an architecture that 
supports an operating system with a "real-mode" (allowing direct 
access to hardware) and the course described in this paper evolved 
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method of user input. Finally, the Raspberry Pi's native HDMI 
interface (e) is connected to a monitor, which provides a means of 
graphical output from the Raspberry Pi. 

3.2 Software Setup 
Writing bare-metal assembly for the Raspberry Pi involves a 
different software setup than would be used to write and run 
programs directly on the device itself. Given that the Raspberry Pi 
will not be using a full-featured operating system (that is, instead 
of Linux we use a simple operating system that does not provide 
facilities such as text editors, compilers, or debuggers), students 
must edit and compile their programs on a different computer 
system, herein referred to as the host. The compiler on the host 
must be able to cross-compile source code to produce executable 
binaries that run on the Raspberry Pi. Debugging provides an 
additional challenge, since the host debugger is interacting with a 
program running on a remote system. 

The software setup used on the workstations involves a 
distribution of the Linux operating system. A version of the GNU 
Compiler Collection (gcc), built to target the Raspberry Pi's 
ARM11 architecture, was installed on the workstations, providing 
a cross-platform compiler and debugger. Additionally, the GNU 
Debugger (gdb) Server provided by SeggerTM (JLinkGDBServer) 
was installed on the host computers to allow communications 
between the gdb debugging client on the host and the JLink EDU 
remote debugging unit connected to the Raspberry Pi. 

In order to establish a connection between the JLink EDU remote 
debugging unit and the Raspberry Pi, the GPIO lines used for 
JTAG communication must be set to the correct mode using a 
sequence of software commands. To accomplish this, a "minimal" 
kernel image with just enough code to enable the JTAG GPIO 
lines is compiled by the students and copied to the SD card from 
the host computer, and the Raspberry Pi is powered on with this 
SD card inserted. One difficulty here is that, at the time that this 
paper was authored, the details of the first-stage bootloading 
process were not currently publicly available, so students were not 
able to recreate this stage of the bootloading process themselves. 
To solve this problem, an SD card is first written with the original 
Raspbian distribution (available on the Raspberry Pi website, and 
which includes the first-stage bootloader), and then modified by 
overwriting the kernel image file used in the second-stage of the 
bootloading process with the "minimal" kernel image. 

Once the Raspberry Pi is powered on with an SD card containing 
the "minimal" kernel image, the JLinkGDBServer can be started 
on the host computer. After a successful connection has been 
made and the debugger server is running, the students can start the 
ARM-targeted gdb client using a kernel image they have 
compiled with the ARM-targeted compiler, and establish a remote 
debugging connection to the JLinkGDBServer instance. At this 
point, the student executes a command in the gdb client to upload 
the kernel image to the Raspberry Pi's memory, sets the Raspberry 
Pi's program counter register to the beginning of the kernel image, 
and continues execution on the device. If successful, the student's 
new kernel image will now be running on the device. 

3.3 Additional Considerations 
While the overall experience of working with the Raspberry Pi 
was generally advantageous to students, it should be noted that the 
specialized lab we created came with a price tag of more than 
$30,000 (CAD) for about 34 workstations (including 4 
workstations for instructional staff). Although this cost might be 
considered prohibitive for some institutions, it is worth noting that 
the lab was constructed with completely new equipment, 

including new top-of-the-line host machines and dual monitors 
(one for the host and a HDMI monitor for the Raspberry Pi). 
Consequently, it should be noted that this price tag could be 
reduced substantially by simply equipping an existing lab of host 
machines; the add-on price for converting an existing lab to make 
it Raspberry Pi-ready can be very minimal, and would include 
only the price for HDMI monitors (if necessary), JLink devices, 
and a few inexpensive accessories. Furthermore, there are cheaper 
display options than the HDMI monitors used in our lab that can 
be used with the Raspberry Pi's RCA video output. 

The cost of the Raspberry Pi itself and its accessories is very low; 
the price for an assembled kit (which includes a power supply 
adapter, SIM card, cables, and protective case) was about $85 
(CAD) in Winter 2015. Note that all students were required to 
purchase the Pi and accessories when registering for the course. 

It should also be noted that, with the enrollment in the winter 
semester exceeding 100 students, the students were struggling to 
find lab time and space during peak times close to assignment due 
dates. Not being able to work from home (due to the specialized 
hardware required) was a clear disadvantage to students, but 
duplicating a lab workstation at home incurs a relatively low cost, 
and can be encouraged in future offerings. Students would need 
only an extra HDMI screen, a JLink EDU device, and our locally-
manufactured breakout board. 

4. COURSE OBJECTIVES 
As this paper describes the use of the Raspberry Pi for assembly 
language instruction, it is worth noting that several Raspberry Pi 
topics are considered course objectives, including (but not limited 
to) the following: 

Advanced ARM Assembly Programming: Students are exposed 
to stacks, the concept of subroutines (as implemented in assembly 
language), two-dimensional arrays, and interrupt service routines. 

General-Purpose Input/Output: GPIO is a well-known 
mechanism used to provide flexible I/O for microcontrollers. 
GPIO allows the students to connect a wide range of I/O devices 
to the Raspberry Pi. However, a substantial amount of 
programming is required to write device interface functions (i.e., 
GPIO is not plug-and-play). Students are expected to become 
proficient in the use of GPIO registers, including those that set the 
function for a GPIO line (e.g., input, output, or a special function) 
and those that read or set the values of the GPIO lines [7]. 

Universal Asynchronous Receiver/Transmitter Protocol: 
UART is a low speed serial protocol used ubiquitously for simple 
communication between devices. The Raspberry Pi provides 
support for UART (and a reduced implementation called mini-
UART) through its GPIO interface. The protocol is relatively easy 
to present to students, and students are required to implement a 
driver for a generic UART device from scratch. 

Video Programming: The Raspberry Pi provides support for 
video programming via a frame-buffer architecture accessed 
through memory-mapped I/O (that is, the frame-buffer is accessed 
through memory load and store instructions). On the Raspberry 
Pi, the buffer is initialized through a mailbox interface, and is 
used to establish communication between the ARM core and the 
video core (or GPU). A suite of registers in addition to RAM is 
used for this communication, and the use of these registers, along 
with the protocol for initializing the frame-buffer [7,13], are both 
areas in which the students must become proficient. 

Interrupts and Exceptions: The ARM architecture has a number 
of different execution modes, and software or hardware 
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enjoyed the idea of the RPi, the projects consumed a lot of my 
time, more than any other course by far. […] It was interesting to 
work below the OS […], but the projects required a lot of 
troubleshooting and we could only work on the RPi on campus." 

8. CONCLUSION 
Teaching assembly language programming at the undergraduate 
level is often challenging, and this can often be attributed to the 
perceptions (of the students) that the topic is dull and tedious. 
Earlier attempts to offset this bias (in the predecessor Computing 
Machinery II course discussed herein) included the incorporation 
of video game development to introduce a "fun factor" into the 
student experience. While we have retained this element in our 
present course design, we looked at incorporating a contemporary 
platform that students would find more relevant to the current 
state of the computer industry. The use of a credit card-sized 
computer with an ARM processor served this purpose, largely 
because of prevalence of mobile devices in the students' daily 
lives. In this paper, we show that a significant majority of the 
students were more motivated to learn about the 
hardware/software interface and assembly language due to the use 
of the Raspberry Pi as a learning platform. Another majority also 
indicated that the Raspberry Pi improved their learning experience 
and enjoyment of the topic.  

These results, compiled from the "self-assessments" provided by 
the students on the survey instruments, closely align with our own 
quantitative analysis of student performance. We found that there 
was a significant increase in mean grade point value for the exam 
associated with this module of the Computing Machinery II 
course when the course switched to the Raspberry Pi from the x86 
platform. Furthermore, a reduced standard deviation (in the 
context of a greater mean grade value and in conjunction with a 
visual inspection of the distributions from Figure 2) indicates that 
fewer students are being "left behind" in this challenging subject. 

On the task of improving the experience further, it should be 
noted that the Raspberry Pi seemed to convince only about 30% 
of the surveyed students to pursue future independent learning 
about low-level programming. Although this is certainly a 
respectable result, the task of increasing this value further remains 
daunting. This result raises the following question: If a student 
enjoys programming with assembly on the Raspberry Pi and 
indicates that this was a memorable learning experience, why 
would they remain unconvinced to learn more about the subject 
independently, and what can be done to address this? 

Finally, while the experience was generally advantageous to a 
large majority of students, qualitative analysis also indicated two 
areas for improvement: the "unfriendly" development 
environment, and the accessibility to the lab. There is not much 
that can be done to address the perception of the development 
environment as "unfriendly", since cross-compilation and the use 
of the JLink debugging device is, at the moment, a necessary 
complication. Improving lab access is also difficult, since 
increasing the size of our lab facilities requires finding new space 
when space is scarce, and expending more money. One possible 
solution is to provide help and resources for students who wish to 
duplicate the development environment on a home computer. The 
additional cost to students is relatively minor (and, of course, 
entirely optional if they would rather work on campus). 

There will always be trade-offs when choosing particular 
platforms to achieve general pedagogic aims. As we have shown, 

the use of a specific platform to teach general concepts by 
exposing them to real-world experiences can be very beneficial to 
students, but, special care must be taken to ensure that "platform-
specific details do not swamp pedagogic objectives." [14] 
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