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Abstract—An introductory course on distributed systems typi-
cally exposes students to some basic synchronization distributed
algorithms. This is often the first exposure for these students
to the topic of distributed algorithms. In addition, in a systems
course, these algorithms are typically covered in an informal way,
avoiding proofs of correctness or complexity analysis. Hence, this
first exposure can be challenging to students. Visualization of
these algorithms can help alleviate some of these challenges. We
present a suite to visualize six basic algorithms on total ordering,
critical sections, and leader election.

Index Terms—Computer Science Education; Tools for Educa-
tion; Distributed Algorithms; Distributed Systems; Visualization

I. INTRODUCTION

A first course on distributed systems intends to expose

students to the fundamentals of building such systems. One

of the most challenging subjects in such courses is distributed

algorithms. Unlike a course on distributed algorithms, a dis-

tributed systems course is of the applied nature focusing on

how to practically build distributed systems. Hence, only a

minimal exposure to the topic of distributed algorithms is

required. Distributed algorithms is a complex subject on its

own and requires rigor to prove the correctness of algorithms

and analyze their complexity, but such rigor is normally

beyond the scope of a distributed systems course. Hence, the

coverage of the algorithms topic in a systems course tends

to be informal (see Tanenbaum and Steen’s textbook [15] for

example.) The distributed algorithms community and the larger

algorithms community rightfully warn of the dangers of shying

away from formalism. One of the authors of this paper taught

distributed systems for two decades and also published theory

papers about distributed algorithms. While we believe that

such “in-formalism” may be necessary in this context, it ag-

gravates the students confusion and misunderstanding of these

algorithms. This author’s experience manifests that visualizing

these algorithms can diminish these pedagogical challenges.

The remaining authors are undergraduate students who also

concur with this observation based on their experience in their

first course on distributed systems. The development of the

visualization suite presented in this paper was motivated by

their personal needs as students as well as the needs of their

peers to better understand these algorithms.

In this paper, we present a suite to visualize six algorithms

chosen from Tanenbaum and Steen’s textbook [15]. These are

totally-ordered multicast or broadcast [3], token-ring mutual

exclusion [15], leader-based mutual exclusion [15], timestamp-

based mutual exclusion [11], [13], ring leader election [7], and

bully leader election [8]. We reproduce these algorithms in a

unified framework using clear pseudo-code, alleviating some

of the confusion resulting form the narrative approach taken in

the textbook. Then, an interactive visual simulation for each of

the algorithms is presented, bringing the students closer to un-

derstanding these algorithms without wondering into complex

formal discussions (which we emphasize is necessary in a dis-

tributed algorithms course.) This suite is available at the URL:

https://pages.cpsc.ucalgary.ca/˜jkawash/DAsim.html.

Algorithm visualization has been widely recognized as an

effective approach to improve instruction, and has been posi-

tively received by educators and students alike (for example,

see [6], [9], [12], [14]). Hence, there is a sizable body of

research on this subject, but it is largely in the context of

introductory data structures and (sequential) algorithms. There

has been also some work on visualizing multithreaded be-

havior [1], [4], [5]. Visualization of classical synchronization

problems involving concurrent algorithms has been addressed

as well [2]. To our knowledge, there is barely any published

work on visualizing distributed algorithms for educational

purposes. The work of Koldehofe et al. [10] is aimed at

students in a distributed algorithms course, where complexity

(time and space) of algorithms as well as basic invariants to

establish their correctness are the focus. Our work is aimed

at students in a distributed systems course, where complexity

measures and proofs of correctness are not required.

The remainder of the paper has two sections. In the next

section, the algorithms and their corresponding visualizations

are presented. Conclusions are in the last section.

II. VISUALIZATION SUITE

All the described algorithms assume a system of n processes

with unique ids. Processes can communicate via point-to-

point, reliable connections. All algorithms utilize the following

blocking system calls to send and receive messages:

send(m, p): send message m to process p.

receive(): receive and return a message.

978-1-7281-8478-4/21/$31.00 ©2021 IEEE 21–23 April 2021, Vienna, Austria
2021 IEEE Global Engineering Education Conference (EDUCON)

Page 199

2
0
2
1
 I

E
E

E
 G

lo
b
al

 E
n
g
in

ee
ri

n
g
 E

d
u
ca

ti
o
n
 C

o
n
fe

re
n
ce

 (
E

D
U

C
O

N
) 

| 9
7
8
-1

-7
2
8
1
-8

4
7
8
-4

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/E

D
U

C
O

N
4
6
3
3
2
.2

0
2
1
.9

4
5
3
9
0
6

Authorized licensed use limited to: University of Calgary. Downloaded on February 01,2023 at 22:16:41 UTC from IEEE Xplore.  Restrictions apply. 



Some algorithms utilize (FIFO or priority) queues of pro-

cesses or messages. A queue Q has the following functions:

Q.head(): returns the element at the head of the queue without

removing it.

Q.remove(e): removes and returns the element e.

Q.add(e): adds the element e.

Q.isEmpty(): returns true if the queue is empty. Returns false
otherwise.

A. Totally-Ordered Broadcast

The totally-ordered broadcast algorithm [3] uses logical

timestamps [11]. Logical time is incremented each time a local

event or a single message is sent. It is also updated if the

received message contains a timestamp that is larger than the

local logical time [11]. These details are omitted from the

presented pseudo-code.

In the totally-ordered broadcast algorithm, a group of pro-

cesses (called tob processes) coordinate to enforce a global

total ordering on updates to a fully-replicated database (each

site has a complete copy of the database). The algorithm

specifies how updates are dealt with. Database queries (reads),

can be simply satisfied by the local replica without any

coordination with the other replicas. To enforce a total ordering

on the updates, each process maintains a priority queue of

messages. The priority is established using logical timestamps,

which are assumed to be unique (pairing the timestamps with

the unique process id will do the trick.) Given a message m,

m.ts refers to the timestamp stored in m. The algorithm uses

two types of messages:

μ[update, t]: an update to the distributed database with pig-

gybacked logical time t
μ[ack, t]: an acknowledgment for receiving an update message

with piggybacked logical time t.

Each process maintains the following local variables:

variables
mQueue: a priority queue for messages m sorted by m.ts

ts: n× n matrix of timestamps; initially zero

//tsi,j is the timestamp recorded by process i for process j

Whenever a process i receives an update u from the

local application layer, the tob process executes the

broadcastUpdate(u) function:

broadcastUpdate(update u) {
tsi,i ← tsi,i + 1
u.ts ← tsi,i
send(u, j), ∀j �= i

}

Each process i has two daemon threads: one indefinitely

executes receiveMessage() to receive update and ack

messages from other processes and the other indefinitely

executes applyUpdate() to apply updates to the local database

replica.

receiveMessage() {
m ←receive() from process j
tsi,j ← m.ts

mQueue.add(m)

if m.ts > tsi,i then
tsi,i ← m.ts

send(μ[ack, tsi,i], k), ∀k �= i
end-if

}

applyUpdate() {
u ←mQueue.head()

if ∀j, u.ts ≤ tsi,j then
mQueue.remove(u)

apply u to the local database replica

end-if
}

The simulator for this algorithm is shown in Figure 1. To

illustrate the need for totally ordering updates, the simulation

assumes a simple banking application. Processes can invoke

one of two updates on an account object: withdrawing $100

or applying a 1% interest rate to the balance.

The simulation options allow the user to run the simulation

with and without totally ordering the updates, resulting in

inconsistent replicas in the latter case. They also allow the user

to choose the number of processes (up to 4) and the speed of

simulation (fast, slow, or step-by-step). The visualization area

shows the processes, their queues of updates, the local logical

time, and the value of the account balance in the local replica.

Update requests and acknowledgments arrows are also color

coded.

B. Critical Sections

Critical sections are a mechanism to achieve mutual exclu-

sive locking of shared resources. Processes participating in the

critical section problem have the following structure:

repeat
enter()

criticalSection()

exit()
remainder()

until done

The remainder() function contains non-critical-section

code. The three algorithms described next provide implemen-

tations for the enter(), exit(), and remainder() functions.

Where appropriate, criticalSection() will also be modified.

1) Ring Algorithm: The ring critical section algorithm [15]

assumes that processes are organized in a uni-directional

logical ring and uses one message type: μ[token]. One process
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(a)

(b)

(c)

Fig. 1. The Totally-Ordered Broadcast Algorithm Simulator (a) Simulation
options (b) Simulation without total ordering (c) Simulation with total ordering

creates a single token message and passes it to its successor

in the ring. The token circulates the ring. To enter the critical

section, a process waits for the token message and when it

exits, it releases the token. The following code is for process

i.

Fig. 2. The Ring Critical Section Algorithm Simulator

enter() {
wait for μ[token]

}

exit() {
send(μ[token], successor(i))

}

remiander() {
if μ[token] is received then

send(μ[token], successor(i))
end-if

}

The visual simulator for the ring critical section algorithm is

shown in Figure 2. The slider bar allows the user to specify the

number of processes up to 9 processes. The Running Times
allow the user to specify the length of remainder code and

critical section code in clock ticks. The simulation can be run

continuously with a slow (using the “play” button) and fast

speed (indicated with the “fast forward” button). It can be

also run step-by-step using the “step” button.

The visualization area shows the ring of processes. A pro-

cess representation changes color based on its state (in critical

section, in remainder, or waiting to enter critical section);

the state is also written underneath the bubble representing

a process. Passing of a token message is indicated with an

arrow from the sender to the receiver process.

2) Timestamp Algorithm: The timestamp critical section

algorithm [13] employs logical time stamps [11] and requires

a process to obtain clearance from all other processes before

entering a critical section. It uses two types of messages:

μ[request, p, t]: a request from process p to enter the critical

section at time t.
μ[acquire, q, p]: a clearance from process q to process p for

the critical section.
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In addition, each process maintains the following local

variable.

variables
waitQueue: FIFO queues of processes.

Similar to the totally ordered broadcast algorithm, logical

time is incremented each time a local event or a single

message is sent, and it is updated if the received message

contains a timestamp that is larger than the local logical time.

These details are omitted from the presented pseudo-code.

We use the function time(i) to return the current local logical

time for process i. In addition, it is assumed that timestamps

are unique.

enter(){
thread:

send(μ[request, i, time(i)], j), ∀j �= i
wait for μ[acquire, j, i], from every j �= i

end-thread
thread: repeat while in enter()

μ[request, j, t′] ← receive()

if time(i) ¿ t′ then send(μ[acquire, j, i], j)

else waitQueue.add(j)

end-thread
}

exit() {
for each j in waitQueue do

send(μ[acquire, i, j], j)

waitQueue.remove(j)

end-for
}

remiander() {
if μ[request,j, t] is received then

send(μ[acquire, i, j], j)

end-if
}

criticalSection() {
thread:

. . . critical section code

end-thread
thread: repeat while in criticalSection()

μ[request, j, t] ← receive()

waitQueue.add(j)

end-thread
}

The simulator for this algorithm is shown in Figure 3. The

simulation options allow the user to choose the number of

processes (up to 4) and the speed of simulation (fast, slow,

or step-by-step). The visualization color-codes the states of

Fig. 3. The Timestamp Critical Section Algorithm Simulator

processes (in enter, critical section, exit, or reminder sections).

It also shows the queues maintained by each process. The

request and acquire (ACK) messages are indicated using color-

coded arrows.

3) Leader Algorithm: The leader critical section algorithm

[15] assumes a leader has been elected. The leader is respon-

sible for permitting other processes to enter the critical section

and keeps track of the processes requesting to enter the critical

section. It uses three types of messages:

μ[request, p]: a request from process p for the critical section.

μ[release, p]: a release by process p of the critical section.

μ[acquire, p]: a message from the leader process for process

p to acquire the critical section.

This is an asymmetric algorithm that requires different code

for the leader and non-leader processes. The enter and exit

functions for non-leader process i are as follows (remainder

section is irrelevant):

enter() {
send(μ[request, i], leader)

wait for μ[acquire] from the leader

}

exit() {
send(μ[release, i], leader)

}

The leader process maintains the following local variables.

variables
waitQueue: a FIFO queue of waiting processes for the

critical section.

mutex: Boolean mutex variable, initially false; it is true
when the critical section is acquired.

The leader process code is as follows:
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Fig. 4. The Leader-based Critical Section Algorithm Simulator

m ← receive()

case m is μ[request,j] then
if mutex then waitQueue.add(j)

else
mutex ← true
send(μ[acquire, j], j)

end-else
end-case
case m is μ[release, j] then

if waitQueue.isEmpty() then
mutex ← false

end-if
else
k ← waitQueue.head()

waitQueue.remove(k)

send(μ[acquire, k], k)

end-else
end-case

The simulator for this algorithm is shown in Figure 4. The

options are the same as the ring critical section algorithm and

are omitted from the figure. In the visualization area, the queue

of processes maintained by the leader process is also shown.

C. Leader Election

The purpose of leader election is to achieve census among

all n processes in the system designating a single process as

the leader. The leader is the process with the highest id. Both

leader election algorithms described in this section assume

each process with id i has the following local variables.

variables
runningi:Boolean variable, initially false; set to true if

process i is running for election

leaderi: contains the id of the current leader

Both algorithms also use the following two types of mes-

sages:

μ[election, p]: signifies an election is going on with process

p as a candidate.

μ[leader, p]: announces the end of an election with process p
as the elected leader.

In both algorithms, any process can initiate an election

through initiateElection() and all (live) processes execute

particpateInElection() in a daemon thread. Several processes

may initiate elections concurrently.

1) Ring Algorithm: The ring leader election algorithm

covered in this class is the O(n2) algorithm [7]. Processes are

organized in a unidirectional logical ring, with the following

functions: predecessor(p) returns the id of the predecessor of p
in the ring and successor(p) returns the id of the successor of

p in the ring. A process creates an election message, writes its

id in it, and sends it to its successor. A process that receives

an election message from its predecessor checks if the process

id in the message is smaller than its own. If not, it passes the

message to it successor. Otherwise, it either kills the election

message if it already participated in this election round or

replaces the id in the message with its own and passes it to

its successor.

The code for process i is given next.

initiateElection(process i) {
runningi ← true
send(μ[election, i], successor(i))

}

Recall that function particpateInElection( ) runs in a

process as a daemon thread; that is, it runs all the time.

particpateInElection(process i) {
m ← receive() from predecessor(i)
case m is μ[election, j] then

if j > i then
send(μ[election, j], successor(i))

end-if
if j < i and not runningi then

send(μ[election, i]], successor(i))
runningi ← true

end-if
if j = i then

send(μ[leader, i], successor(i))
end-if

end-case
case m is μ[leader, j] then

leaderi ← j
runningi ← false
if j �= i then

send(μ[leader, j], successor(i))
end-case

}
Process crash failures and recovery require the re-

construction of the ring. If a process realizes that its

successor has crashed, it replaces its successor(i) with
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Fig. 5. The Ring Leader Election Algorithm Simulator

successor(successor(i)) in a recursive way. The restarting of

a previously crashed process restores the original successor

relation. A process p also invokes initiateElection(p) when p
is first introduced to the system, re-introduced after a crash,

or when it realizes that the leader has crashed.

The simulation for the ring leader election algorithm is

shown in Figure 5. In the simulation options, the user chooses

the ring organization, the number of processes can be selected

up to 9 processes, and the simulation speed. The visualization

area shows the processes and their states, and the message be-

ing sent. Clicking a bubble results in the corresponding process

to initiating an election. In addition, the simulation allows a

user to crash/restart a process by clicking its bubble. When a

process crashes, its predecessor will initiate a new election. In

the simulator, the user can decide which processes are crashed.

Any crashed process can be re-introduced to the ring. Giving

the user the ability to choose the ring organization, allows

students to experiment with different ring organizations and

to study the number of messages each organization generate.

2) Bully Algorithm: The bully leader election algorithm

[8] also assumes that process failures can be detected. Any

process can initiate an election, and at the end of any election,

the process with the highest id that is still alive is elected.

A process that initiates election sends and election message

to all processes with a higher id. Those that are alive bully
that process and send election messages to processes with

higher ids, until a single process bullies all running-for-office

processes. This algorithm has a third type of messages:

μ[bully]: bullies the receiver to quit an election.

Also it needs an extra local variable to synchronize internal

threads with each process i.

variables
leaderAnnouncedi:initially false; it is set to true when a

winner is announced

Similar to the ring algorithm, a process p also invokes

initiateElection(p) when p is introduced or re-introduced to

the system or when it realizes that the leader has crashed. In

our simulator, it is left to the user to decide which process

initiates elections and when to initiate them. Also, similar

to the ring algorithm, the user can decide which processes

to crash and which crashed process to re-introduce to the

system. Code for process i is given next.

initiateElection(process i) {
runningi ← true
if i is the highest id then

send(μ[leader, i], j), ∀j �= i
end-if
else

send(μ[election, i], j), ∀j > i
end-else
wait for t time units

if no response is received then
leaderi ← i
send(μ[leader, i], j), ∀j �= i

end-if
else //a μ[bully] message must have been received

wait for t′ time units

if not leaderAnnouncedi then
initiateElection(i)

end-if
end-else

}

particpateInElection(process i) {
m ← receive()

case m is μ[leader, j] then
leaderi ← k
runningi ← false
leaderAnnouncedi ← true

end-case
case m is μ[election, j] then

if i > j then
send(μ[bully], j)

if not runningi then
initiateElection(i)

end-if
end-if

end-case
}

The simulation for the ring leader election algorithm is

shown in Figure 6. The options are similar to the ring leader

election algorithm. The visualization area shows the state of

processes including crashed ones. A process can be crashed

or “uncrashed” by clicking its corresponding bubble.

III. CONCLUSIONS

Distributed algorithms is an inherently complex subject that

requires formalism to prove their correctness and analyze their

978-1-7281-8478-4/21/$31.00 ©2021 IEEE 21–23 April 2021, Vienna, Austria
2021 IEEE Global Engineering Education Conference (EDUCON)

Page 204

Authorized licensed use limited to: University of Calgary. Downloaded on February 01,2023 at 22:16:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. The Bully Leader Election Algorithm Simulator

complexity. However in an introductory course on distributed

systems, a minimal exposure to the subject of distributed

algorithms is needed without the required rigor, and as as

result, such algorithms are presented in an informal way. This

creates a challenge to educators and students alike to navigate

this difficult subject without resorting to formal methods.

Visualization of algorithms has been utilized to alleviate some

of the difficulties of teaching and learning algorithms and data

structures, and we believe that it can accomplish the same

objective in the context of distributed algorithms.

The paper presented interactive visual simulations for six

basic distributed algorithms, typically covered in an introduc-

tory distributed systems course. These cover totally-ordered

broadcast, critical sections, and leader election. Developed

by students, this suite includes the features that the students

identified as needed in order to help them and their peers

understand these algorithms.

In this paper, there is no assessment of the suite. Two

research questions remain open and will be addressed in future

research: (1) How engaging do the students find the suite, and

(2) How and in what measurable ways these visualizations

improve the learning of students.
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