THE RABIN-WILLIAMS PKC

1. DESCRIPTION OF RABIN-WILLIAMS

Public-key encryption scheme provably equivalent to integer factorization (Rabin, Williams 1980).

Modification of Rabin’s scheme (similar to RSA using e = 2) with unique decryption.

Lemma 1.1. Lei n = pq with p=¢q = —1 (mod 4). If (%) =1, then
MO/ =41 (mod n)

Proof. (%) =1— (%) = (%) If (%) =1, then

p—1

M™= =1 (mod p)

p—1g-—1
2 2

1 (mod p) .
Similarly,

g—1lp—1

M™= "7 =1 (modgq)
and by the CRT we have M%(™/* =1 (mod n).

If (5f) = —1, then we use the fact that (-=1)»=1/2 = 1 (mod p) when p = —1 (mod 4) to argue that

MoM/4 = 1 (mod n).

1.1. Key Generation. Select large primes p,q with p =3 (mod 8), ¢

Select at random e such that 1 < e < n and ged(e, ¢(n)) = 1.
Solve ed = m (mod ¢(n)) where m = (¢(n)/4 + 1)/2.
Public key: {n,e} Private key: {d}

1.2. Encryption and Decryption. Define M = {M | (2(2M +1) < n and (2M+) = —

n and (2LE) = 1)}

Theorem 1.2. | M| =3/16¢(n) — ¢ and t < 1/2y/nlogn +5/4 (i.e., |IM| € O(n)).

For M € M define:

42M +1) if (2L E
El(M)Z{QEQM—i—l ¢ E - ; (note (
Ey(N)=N?* (modn) (0 <E(N)<nandN6Z)
Dy(K)=K? (modn) (0< Dy(K) <n),

(L/4A—-1)/2 if L=0 (mod 4

4—-1)/2 fL=1 (mod4
bud) = E(L/z—)lg/Q !/ if L =2 Emodél

(n—L)/2-1)/2 ifL=3 (mod 4

To encrypt M € M, the sender computes C' = E,(Ey(M)).

To decrypt C, the receiver computes Dy (D2(C)) = M.
1

7 (mod 8), and put n = pq.

O



2. PROOF OF EQUIVALENCE TO FACTORING
Theorem 2.1. If M € M then D1 DsEsE; (M) = M.
Proof. We have:
N=FE; (M) with2|N,0< N <mn, and (Z) =1

L=D,Ey)(N)=N?* =N =NW/H = &N (modn) withO<L<nandn=1 (mod 4)
Thus, if L is even, then L = N and if L is odd, then L =n — N.
If L=0 (mod 4), then (2M + 1) = N/4 = L/4A—s M = (L/4 —1)/2 = Dy (L).
IfL=1(mod4),then2M+1=(n—-L)/4— M= ((n—L)/4—-1)/2 = D(L).
IfL=2 (mod4),then2M+1=L/2—M = (L/2-1)/2=D,(L)
If L=3 (mod 4), then 2M + 1 = (n— L)/2— M = Dy (L). O

We will now show that breaking the encryption scheme is equivalent in difficulty to factoring n.

Lemma 2.2. If n is given as above, then for any X € Z there exists Y € Z such that X?> = Y? (mod n)
and (37) = —(5})-

Proof. (%) = (’71) (%) = —(%). Let
=-X (modp), Y=X (modg) .
Then Y2 = X2 (mod n) and

()=6)6E)-G)6=-6) D

Lemma 2.3. If K = E(M) (here E = ExE; ), then there exists X1, Xo such that X1 # X5, 0 < X1, X5 < n,
X? = X3 =K (mod n) and (%) = (%) =-1.

Proof. Let N = F;(M) and Y = N¢ (mod n). We have K = (N¢)> = Y2 (mod n) and since (&) =
1— (¥) = 1. By Lemma 2.2 there exists an X such that X? = Y2 = K (mod n) and (£) = —1. Let
X1£X(modn),0<X1<n,andX2:n—X1. O

Put X = {X | X? = E(M) (mod n), M € M, (%) = -1,0 < X < n}. Then |X| > 2|M| by Lemma 2.3. If
we select at random a value of X such that (£) = —1 and 0 < X < n (there are ¢(n)/2 such X values) then
the probability that there exists an M € M such that X2 = E(M) (mod n) is about 3/4.

If F' is an algorithm which decrypts 1/k of all possible ciphertexts, then we see that we can select at random
a value of X (0 < X < n) with (£) = —1 such that E(M) = K = X? (mod n) for some M € M and

F(K) = M with probability about 2. We expect to conduct about 4k/3 trials before such an example is
found. Put Y = Ey(M)® = E;(F(K))® (mod n). Then

Y?=X? (mod n) and (Y) =1, (X> =-1
n n

and n =pq| X2 —-Y? —pq| (X —=Y)(X +Y). Now:

e If pg| X —Y, then X =Y (mod pq), and()

= (¥), a contradiction.
o If pg| X +7Y, then X = -Y (mod pq), and ( ) =

(%) = (%), a contradiction.

Hence, gcd(X —Y,n) = p, q, i.e., we can factor n.



