THE DATA ENCRYPTION STANDARD (DES)

1. DESCRIPTION OF DES

DES (FIPS 46-3) is a block cipher that operates on 64-bit blocks. Keys are 64 bits long, but 8 of these are
parity bits, leaving 56 actual key bits. The basic operation of DES is as follows:

(1) The 64 plaintext bits are permuted in a fixed order (transposition cipher).

(2) The block is divided into two 32-bit words Ly and Ry.

(3) The block undergoes 16 substitution “rounds.” In each round, one word is transformed using XOR
and a substitution function, after which the two words are swapped.

(4) In the last round, the two words are not swapped.

(5) The original permutation is reversed.

w

Thus DESke, (M) = IP7"(S16(S15(. .. (S2(S1(IP(M))))...))). The overall structure of DES is illustrated
pictorially in Figure 1.

We now describe the individual components of DES.

1.1. Initial Permutation. Simply a fixed re-ordering of the input bits, described in the FIPS document.
Notation: the first bit of the output is the 58th bit of the input.

1.2. Substitution Rounds. In round i, the right word R;_; is combined with the ith subkey K; via the
function f. The output of f is XORed with L; 1 to form R;. The next left word L; is the previous right
word (L; = R;_1).

1.3. The Function f. f accepts as input R; (32 bits) and the ith round subkey K; (48 bits). The subkey
generation is described below. The function f works as follows:

(1) R; is expanded to the 48 bit R; via the expansion function F, which simply repeats some of the bits
of R; in generating R; (see the FIPS publication for the specification of E).

(2) R;is XORed with K; (both are 48 bits long).

(3) R;» @ K; is broken into 8 6-bit words. Each of these words is replaced by a 4-bit word according to
the 8 (different) S-boxes Sy, S, ..., Ss. The result of applying the S-boxes is a 32-bit string.

(4) The 32-bit string is permuted according to the fixed permutation P (see the FIPS publication).

Figure 2 contains a pictorial description of f.

1.4. Generation of the Subkeys K;.

(1) The key K (56 bits) is permuted according to the fixed permutation “PERMUTED CHOICE 1”
(see FIPS publication) and separated into two 28-bit words Cy and Dy.

(2) Each word is rotated either one or two places to the left according to the fixed schedule below,
yielding Cy and D;.

F1GURE 1. Diagram of DES

INPUT

'

[INITIALPERMUTATION }

%\ 1

L=Ry Ry =Ly B fRy. K1)
K
¢ 2
f
L2:Rl R2 :Ll @ f(Rl,K 2)
! oo [K
| | n
v |
T
‘
el //<____>>>>,\
f///‘____ ;;;<<——>‘
Y Y
LismRig Ris=L1a @ f(Rya. K1s)
K
¢ 16
f
R16=L1s P f(Ris K 16) g™ Ri5

| |
'

[INVERSE INITIAL PERMUTATION }

'

OUTPUT

Iteration 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
#ofleft shifts [1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
i . . ’ ’
(3) K, is obtained from Cy and Dy via “PERMUTED CHOICE 2,” which selects 48 bits from C; and

D; according to a fixed ordering.
(4) Steps 2 and 3 are repeated with C; and D; to obtain the remaining 15 subkeys.

This process is illustrated in Figure 3

Ficure 2. DES function f

R (32 bits)

Cw

G

)
bits | K (48 bits)

Ficure 3. DES Key Schedule Algorithm

PERMUTED
CHOICE 1

PERMUTED
CHOICE 2
PERMUTED
CHOICE 2
PERMUTED
CHOQICE 2

o]
H

w

1.5. DES Decryption. The structure of DES allows for easy decryption as long as the key is known. Before
describing the DES decryption algorithm, we state a few properties of the components of the algorithm. We
denote by K,, = KS(n, key) the nth subkey, where KS is the key schedule.

It is easy to see that the following properties all hold:

Liyw=R;
Riv1 = Li ® f(Ri, Ki1) i=0,1,...,15
Li=Ri1 @ f(Ri, Kiy1)
Riy1 @ Li = f(Ri, Kiy1)

In addition, we have

C = Ipil(Rlﬁ,Llﬁ)
IP(C) = (Rig, L1s)

where IP~! is the inverse of the initial permutation function.
Suppose DESy., (M) = C. Denote by

K, = KS(17 — i key), i=1,2,...,16

3

(the key schedule in reverse order). Now run the DES device on C, using K] instead of K;. We have
IP(C) = (R1g, L16), and thus

Ly = Rug Ry = Lug
Ly =Ry = Lig Ry = Ly & f(R,, K)
= Ry = Ri6 @ f(L16, K16)

= Ri6 ® f(Ris, Ki6)
=Ri6 ® Ris ® L5
= L5

In fact, by continuing this argument we get
L, =Ris—; R;=Lis—;

and hence
TP YRy, Lyg) = TP~ (Lo, Ry) = M
Thus, decryption of DES is simply running the DES algorithm on C with the reverse key schedule.

Note. The invertibility of DES is independent of the function f. Regardless of what function is used for f,
decryption of DES works exactly as described above. This works largely because the individual parts of DES
are involutions functions that are their own inverses (g(g(z)) =)

2. STRENGTHS AND WEAKNESSES OF DES

Under DES, encryption of 0 (plaintext consisting of 64 zeros) under the key 0 produces:
4

Plaintext 0000 0000 0000 0000 (in hex)

L1 R1 0000 0000 D8D8 DBBC
L2 R2 D8D8 DBBC E73A EDA4F
L16 R16 BBEA 0DC2 1C20 87FC

Ciphertext 8CA6 4DE9 C1B1 23A7

2.1. Error Propagation. Small modifications in the plaintext should cause a lot of modification in the
corresponding ciphertext. In particular, we want that changing one bit of plaintext causes one half of the
ciphertext bits to change on average (strict avalanche condition).

In the following example, the keys are the same and the plaintexts differ only in the last bit:

K =076 P = (10)*? C = 3AE7 1695 4DC0 4E25
K = 0% P = (10)*'(11) C = 17D8 E9C3 74D1 4494

Note that the ciphertexts differ in 34 bits. Statistically, they are as far apart from each other as random
sequences.

Similarly, we want that changing one key bit causes one half of the ciphertext bits to change on average:

K = 0% P = (01)* C = B109 FD80 3EB2 DO5E
K =01 P =(01)* C = 451F 0033 F24F B8DC

Again, 34 bits differ between the two ciphertexts.

2.2. Cryptanalysis of DES.

(1) Exhaustive search: There are 2°¢ ~ 107 possible keys. If one key is tested every usec, the complete
search would take 2.2 centuries in the worst case (1.1 centuries on average).

(2) Parallelism: A search machine consisting of 10° chips each testing one key per usec (total of 10'?
keys per second) would find a key in one day. Electronic Frontier Foundation has built a DES cracker
for $250000 which finds a single DES key in 56 hours (tests 8800 keys per usec). A combination of
the DES cracker and 100000 PC’s on the internet has found a DES key in 22.25 hours (tests 245000
keys per usec).

(3) Time-memory tradeoff (Hellman): Shorten time by using a lot of memory applies to any brute-
force attack on a cryptosystem.

The time-memory tradeoff idea can be applied as follows. Fix the following notation:

P = 64-bit plaintext
C = 64-bit ciphertext
K = 56-bit key

DES :C = Sk (P)

Let Py be a fixed plaintext block, for example, 8 ASCII blanks (this is a chosen-text attack).

Define f(K) = R(Sk(P)), where R is a reducing function which throws away 8 bits.
5

Start with m points SP;,SP,,...,SP,, selected at random from the key space {0,1,...,2°¢ — 1}. For
1 S i S m let Xi,(] = SR Compute X,;ﬁj = f(X,;’jfl) for 1 S] S t:

SP] :X170—>X172—>"'—>X17t:EP]

SP2 :XQ,(] —>X2’2 — "'—>X2,t :EP2

SPpn = Xpmo = Xy = = Xy = EPy

The endpoints EP; = f(t)(SPi). Discard all the intermediate points and sort

on the end points in ascending order. The steps up to this point amount to a precomputation before starting
the real attack.

Now, suppose someone selects a key K, and the cryptanalyst intercepts Cg = Sk (FPy) (i.e., he knows which
ciphertext block Cy corresponds to Fy). Let Y7 = R(Cy) = f(K). He then checks whether Y is one of the
endpoints in S (very fast since S is sorted). If Y; = EP;, then either K = X;; 1 or EP; has more than
one inverse under f. The cryptanalyst can then check for a false solution by checking that Cy = Sk (P,) for
K = X, ;1 (he needs Py at this point). If no endpoint is Y; or we have a false solution, try Y2 = f(¥1)
and compare Y5 to the endpoints. If Y5 = EP; then K = X, ;_» or we have a false solution. Continue the
process on Y3, etc. until we find K.

Hellman proved that if f(i) is a random function and #>m = N = 256, the expected probability of success
by this method is

mt_l

N t°
Here N = 256 50 if we set t = /N we get 1/t ~ 10~ % (small probability of success). Thus, in order to get an
expected probability of success closer to 1, we compute ¢ ~ 10% tables like S, where for each of these tables
we use a different reducing function R. This yields:

Expected time: tt =12
Expected memory: mt = t? (since m =t = «3/N)

2.3. Analytic Attacks on DES. If a cryptosystem is linear then
C =AP+ BK

where C is the ciphertext, P is the plaintext, K is the key, and A and B are matrices determined by the
system (A and B are public). Note that B may or may not be square. To decrypt:

P=A""(C - BK) .
A cryptanalyst can easily mount a known text attack (P and C known) as follows:
BK =C - AP
BTBK = BT(C — AP)
K =(B"B)"'B"(C — AP)

Thus, linear cryptosystems are not secure (Hill cipher is a simple example). What about DES?
6

If DES were linear, we would have the following matrix sizes:
A:64x64, B :64 x 56,
K:56x1, P:64x1, (C:64x1

In DES, the expansion operation FE, the permutations, and XOR are all linear. All that is left is the S-boxes
if they are also linear, then DES is linear (and hence insecure).

If the S-boxes are affine, i.e., y = Gz + h, where

G is a 4 x 6 matrix
h is a 4 x 1 matrix
x is the 6 x 1 input
y is the 4 x 1 output,

then we can find a matrix H such that for DES
C=AP+BK+H
K= (B"B)"'B"(C - AP - H) .
Thus, an affine cipher is as easy to break as a linear cipher using KTA (note A, B, and H are public).

Suppose the DES S-boxes were affine. If we modify only 4 entries in each of them, the resulting S boxes
need no longer be affine, but affine cryptanalysis would nevertheless yield a solution one time in 3870. To
see this, note that there are 60/64 unmodified entries in each S-box, 8 S-boxes in total, and 16 rounds, so
the probability of running DES without accessing any of the modified S-box entries is

60 8x16 1
64 ~ 3870 °

Thus, linearity or affineness can be exploited if the cryptosystem is close to being affine or linear. This
technique is called linear cryptanalysis (M. Matusi, EUROCRYPT 1993), and will break DES in time 24°
(better than exhaustive search), and Matusi actually used this method to become the first person to recover
a DES key in 50 days using twelve workstations. However, this attack is a known text attack and requires
243 matched pairs of plaintext and ciphertext (not very practical in general).

Differential cryptanalysis (Biham and Shamir, Journal of Cryptology, 1991): chosen text attack requiring
247 chosen plaintext /ciphertext pairs.

Large-scale, parallel, brute-force attack is the most practical attack.

2.4. Strengths of DES.

(1) No S-box is affine

(2) No portion of an S-box is affine.

(3) The overall algorithm is not affine.

(4) No S-box is translation invariant (S(z) # S(z + F))

(5) Changing a single input bit to any S-box causes at least two output bits to change.

(6) P and E are coupled to guarantee that the four outputs of each S-box are taken to six different
S-boxes at the next round.

(7) Rapid error-propagation hinders a key clustering attack (testing a smaller set of similar keys)

