THE BLUM-GOLDWASSER PKC

1. DESCRIPTION

Efficient probabilistic technique, semantically secure assuming the intractability of integer factorization.
Smaller message expansion than Goldwasser-Micali — only < |lgn]| additional bits.

Idea: a pseudorandom bit stream (from the Blum-Blum-Shub pseudorandom number generator) is XORed

with the plaintext. The private key is used to recover the random seed used by the sender to initialize the
PRNG.

Public key: {n}, where n = pq for p,q prime p = ¢ = 3 (mod 4). Such an n is said to be a Blum integer.
Private key: {p,q,a,b}, where ap + bq = 1 with a,b € Z.
B encrypts M to send to A as follows:

(1) Let k = |lgn] and h = |lgk]| > 1. Represent M as a string M = (myms...m;) of length ¢ where

each m; is a binary string of length h.
(2) Select a seed xy which is a random quadratic residue modulo n (simply select a random r < n and

put o = r? (mod n)).
(3) Fori=1,...,t:

(a) Compute z; = z7_, (mod n).

(b) Let p; be the least h significant bits of x;.

(c) Compute ¢; = m; ® p;.

(4) Compute z;,1 = 2? (mod n).
(5) Send C = (¢1ez...ct,2441) 1O A.

Note. Only |lgzy1]| < |lgn] additional bits transmitted.

A decrypts M from C as follows:

(1) Compute

1\ 1\ 1+
dy = (pl—) (mod p—1), dy = (ql_> (mod g —1)

(2) Compute u = xfjrl (mod p) and v = xfjl (mod ¢). Note that u = z¢ (mod p) and v = o (mod g),

because p = ¢ = 3 (mod 4) and z;—; = prH)M (mod p) fori =1,...,t+ 1.
(3) Compute xg = vap + ubg (mod n) (application of CRT).
(4) Fori=1,...,t:

(a) Compute z; = z7_; (mod n).

(b) Let p; be the h least significant bits of x;.

(c) Compute m; = p; D ¢;.
M= (mims...my).
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Proof that decryption is correct. Since z; € QR,, we have z; € QR, —>x:2 =1 (mod p). Thus

e 2\ FL e _ B
vl =) =2,° =2, vy =2 (modp) .
pt1
Similarly, z, * = 24—1 (mod p), and repeating this argument yields

u= mfj_l =z9 (modp), v= mfj_l =129 (modgq) .
1



By the CRT we get
vap + ubg = zo  (mod n),
and thus A creates the same random seed zy used by B to encrypt. Hence, A can now decrypt C. d

2. SECURITY

Note that any method that breaks the scheme must reveal the parity bit of the z; (the key).

Theorem 2.1. Let A, be an algorithm which given any x € QR,, returns the parity bit of y where y*> = x
(mod n) and y € QR,. Then A, can be used to solve the QRP for any [a] € Z7, with (%) = 1.

Note. The theorem states that if you have an algorithm A,, that can predict the previous bit in the key
stream, then this algorithm can be used to solve the QRP.

e it can be shown that previous bit prediction resistance provides the same level of security as next
bit prediction resistance
e hence, breaking BBS is at least as hard as the QRP.

Proof. Suppose we wish to solve the QRP for some [a] € Z. We first determine z = a® (mod n). We apply

A, to x to get b= A, (x). Now b is the parity bit of some y where y? = z (mod n) and y € QR,,. We know
y?> =a® (mod n) —n =pq|(y — a)(y + a). Suppose p|y — a and q|y + a. Then

ply—a—y=a (modp)—1= (i) = (Z)

dlvra—y=-a motn—1=(1)= () =-(])

and thus (ﬁ) = (%) = —1, which is a contradiction. Hence y = +a (mod n).

e If y =a (mod n), then b is the parity bit of @ and a € QR,,.
o If y = —a (mod n), then y = n — 1 and b is the parity bit of y and is not the parity bit of a (since n
is odd).

Thus, if the parity bit of a equals b, then a € QR,, and if it does not equal b, then a ¢ QR,,. d

and similarly

Disadvantage: scheme is vulnerable to a chosen ciphertext attack. For example, an adversary who wants the
decryption of (C, X; 1) can mount a chosen ciphertext attack by obtaining the decryption M’ of (A4, X;y1)
for some random string A of the same length as C. Then K = A® M’ is the keystream used to produce C,
and M =Ca K.



