
THE ADVANCED ENCRYPTION STANDARD (AES)

1. Preliminaries

1.1. Operations on Bytes. Consider a byte b = (b7; b6; : : : ; b1; b0) (an 8-bit vector) as a polynomial with
coe�cients in f0; 1g :

b 7! b(x) = b7x
7 + b6x

6 + � � �+ b1x+ b0 :

RIJNDAEL makes use of the following operations on bytes, interpreting them as polynomials:

(1) Addition: polynomial addition by taking XOR of coe�cients.

b7x
7 + b6x

6 + � � �+ b1x + b0
+ c7x

7 + c6x
6 + � � �+ c1x + c0

(b7 � c7)x
7 + (b6 � c6)x

6 + � � �+ (b1 � c1)x + (b0 � c0)

The sum of two polynomials taken in this manner yields another polynomial of degree 7: In other
words, component-wise XOR of bytes is identi�ed with this addition operation on polynomials.

(2) Multiplication: polynomial multiplication (coe�cients are in f0; 1g) modulo m(x) = x8 + x4 + x3 +
x + 1 (remainder when dividing by m(x) | analogous to modulo arithmetic with integers). The
remainder when dividing by a degree 8 polynomial will have degree � 7: Thus, the \product" of two
bytes is associated with the product of their polynomial equivalents modulo m(x):

(3) Inverse: b(x)�1; the inverse of b(x) = b7x
7 + b6x

6 + � � � + b1x + b0; is the degree 7 polynomial with
coe�cients in f0; 1g such that

b(x)b(x)�1 � 1 (mod m(x)) :

Note that this is completely analogous to the case of integer arithmetic modulo n: In this case
the \inverse" of the byte b = (b7; b6; : : : ; b1; b0) is the byte associated with the inverse of b(x) =
b7x

7 + b6x
6 + � � �+ b1x+ b0:

By associating bytes with polynomials, we obtain the above three operations on bytes. RIJNDAEL uses
inverse as above in the ByteSub operation.

F28 is the set of 256 bytes viewed as polynomials, together with the operations described above.

1.2. 4-byte Vectors. In the MixColumn operation of RIJNDAEL, 4-byte vectors are considered as de-
gree 3 polynomials with coe�cients in F28 : That is, the 4-byte vector (a3; a2; a1; a0) is associated with the
polynomial

a3x
3 + a2x

2 + a1x+ a0;

where each coe�cient is a byte viewed as an element of F28 (addition, multiplication, and inversion of the
coe�cients is performed as described above). We have the following operations on these polynomials:

(1) addition: component-wise \addition" of coe�cients (as described above)
(2) multiplication: polynomial multiplication (addition and multiplication of coe�cients as described

above) modulo M(x) = x4 + 1: Result is a degree 3 polynomial with coe�cients in F28 :
1



In MixColumn, the 4-byte vector (a3; a2; a1; a0) is replaced by the result of multiplying a(x) = a3x
3+a2x

2+
a1x+ a0 by the �xed polynomial

c(x) = 03x3 + 01x2 + 01x+ 02

and reducing modulo x4 + 1: The coe�cients of c(x) are given as bytes in hex notation.

2. The Rijndael Algorithm

Rijndael (developed by Daemen and Rijmen):

� designed for block sizes and key lengths to be any multiple of 32; including those speci�ed in the
AES (n = 128; m = 128; 192; 256)
� iterated cipher: number of rounds, Nr depends on the key length. Nr = 10 for m = 128; Nr = 12
for m = 192; and Nr = 14 for m = 256 (see p. 14 of NIST document).
� F28 = F2[x]=(x

8 + x4 + x3 + x+ 1) used for non-linear byte operations.
� the algorithm operates on a 4� 4 array of bytes called the state:

s0;0 s0;1 s0;2 s0;3
s1;0 s1;1 s1;2 s1;3
s2;0 s2;1 s2;2 s2;3
s3;0 s3;1 s3;2 s3;3

The dimensions of the state depend on the block size.
� the key is expanded into Nr + 1 round keys, where each round key consists of the same number of
bytes as the state.

The Rijndael algorithm (given plaintext M) proceeds as follows (p. 9):

(1) Initialize State with M :

s0;0 s0;1 s0;2 s0;3
s1;0 s1;1 s1;2 s1;3
s2;0 s2;1 s2;2 s2;3
s3;0 s3;1 s3;2 s3;3

 

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

where M consists of the 16 bytes m0;m1; : : : ;m15:
(2) Perform AddRoundKey, which XOR's the �rst RoundKey with State.
(3) For each of the �rst Nr � 1 rounds:

� Perform SubBytes on State (using a substitution, or S-box, on each byte of State),
� Perform ShiftRows (a permutation) on State,
� Perform MixColumns (a linear transformation) on State,
� Perform AddRoundKey.

(4) For the last round:
� Perform SubBytes,
� Perform ShiftRows,
� Perform AddRoundKey.

(5) De�ne the ciphertext C to be State (using the same byte ordering).

Note: Rijndael is a product cipher: each round contains subkey mixing (AddRoundKey), substitution
(SubBytes), and a permutation (ShiftRows and MixColumns).

2



2.1. The SubBytes Operation. (p.15) Each byte of State is substituted (independently). Can be imple-
mented via table lookup (memory permitting), but is described algebraically. Let � be the function mapping
bytes to elements of F28 de�ned by

� : (a7a6 : : : a0) 7!
7X

i=0

aix
i; ai 2 F2 = f0; 1g :

Then:

SubBytes(a) = ��1
�
(x4 + x3 + x2 + x+ 1)�(a)�1 + (x6 + x5 + x+ 1) mod (x8 + 1)

�
:

This operation can be performed using the following steps:

(1) z = �(a) (�eld representation of the byte a)
(2) z = z�1 (take the inverse in F28)
(3) b = ��1(z) (map the �eld element z to the byte b)
(4) Output the byte b0 using the following a�ne transformation:2

66666666664

b00
b01
b02
b03
b04
b05
b06
b07

3
77777777775
=

2
66666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3
77777777775

2
66666666664

b0
b1
b2
b3
b4
b5
b6
b7

3
77777777775
�

2
66666666664

1
1
0
0
0
1
1
0

3
77777777775

Note that b0 = (b07b
0

6 : : : b
0

0) where

b0i = bi� bi+4 mod 8� bi+5 mod 8� bi+6 mod 8� bi+7 mod 8� ci

and c = (11000110):

The inverse of SubBytes (called InvSubBytes, p. 22) is de�ned by

InvSubBytes(a) = ��1
�
((x6 + x3 + x)�(a) + (x2 + 1) mod (x8 + 1))�1

�
:

2.2. The ShiftRows Operation. (p. 17) Shifts the rows of State by 0; 1; 2; or 3 cells to the left:

s0;0 s0;1 s0;2 s0;3
s1;0 s1;1 s1;2 s1;3
s2;0 s2;1 s2;2 s2;3
s3;0 s3;1 s3;2 s3;3

!

s0;0 s0;1 s0;2 s0;3
s1;1 s1;2 s1;3 s1;0
s2;2 s2;3 s2;0 s2;1
s3;3 s3;0 s3;1 s3;2

The inverse operation InvShiftRows (p. 21) applies right shifts instead of left shifts.

2.3. The MixColumns Operation. (p. 17) Consider each column of State as a four-term polynomial with
coe�cients in F28 : For example:

(s0;0; s1;0; s2;0; s3;0) 7! s3;0y
3 + s2;0y

2 + s1;0y + s0;0 = col0(y) :

Let a(y) = (x + 1)y3 + y2 + y + (x) be �xed. Then the MixColumns operation replaces each column of
State via

coli(y) a(y)coli(y) (mod y4 + 1); i = 0; 1; 2; 3 :

Note: MixColumns can also be described as a linear transformation applied to each column of State, i.e.,
multiplying each 4-element column vector by a 4� 4 matrix with coe�cients in F28 :

The inverse (called InvMixColumns, p. 23) is given by

coli(y) a(y)�1coli(y) (mod y4 + 1); i = 0; 1; 2; 3
3



and can also be described as a linear transformation.

2.4. AddRoundKey and the Key Schedule. InAddRoundKey (p. 23), each column of State is XORed
with one word of the round key:

s0;0 s0;1 s0;2 s0;3
s1;0 s1;1 s1;2 s1;3
s2;0 s2;1 s2;2 s2;3
s3;0 s3;1 s3;2 s3;3

 

s0;0 s0;1 s0;2 s0;3
s1;0 s1;1 s1;2 s1;3
s2;0 s2;1 s2;2 s2;3
s3;0 s3;1 s3;2 s3;3

�

w0;i+0 w0;i+1 w0;i+2 w0;i+3

w1;i+0 w1;i+1 w1;i+2 w1;i+3

w2;i+0 w2;i+1 w2;i+2 w2;i+3

w3;i+0 w3;i+1 w3;i+2 w3;i+3

Here wi+0 = (w0;i+0; w1;i+0; w2;i+0; w3;i+0) is the �rst round key for round i; made up of four bytes.

AddRoundKey is clearly it's own inverse.

Consider 128-bit Rijndael. There are 10 rounds plus one preliminary application of AddRoundKey, so
the key schedule must produce 11 round keys, each consisting of four 4-byte words, from the 128-bit key
(16 bytes). KeyExpansion (p. 19) produces an expanded key consisting of the required 44 words. In the
following, the key K = (k0; k1; k2; k3); where the ki are 4-byte words, and the expanded key is denoted by
the word-vector (w0; w1; w2; : : : ; w44):

(1) for i 2 f0; 1; 2; 3g; wi = ki
(2) for i 2 f4; : : : ; 44g :

wi = wi�4�

(
SubWord(RotWord(wi�1))�Rconi=4 if 4 j i

wi�1 otherwise

The components of KeyExpansion are:

� RotWord is a one-byte circular left shift on a word.
� SubWord performs a byte substitution (using the S-box SubBytes on each byte of it's input word).
� Rcon is a table of round constants (Rconj is used in round j). Each is a word with the three
rightmost bytes equal to 0:

KeyExpansion is similar for 192 and 256-bit keys.

2.5. Decryption. To decrypt, perform cipher in reverse order, using inverses of components and the reverse
of the key schedule:

(1) AddRoundKey with round key Nr

(2) For rounds Nr � 1 to 1 :
� InvShiftRows
� InvSubBytes
� AddRoundKey
� InvMixColumns

(3) For round 1 :
� InvShiftRows
� InvSubBytes
� AddRoundKey using round key 1

Note: The straightforward inverse cipher has a di�erent sequence of transformations in the rounds. It is
possible to reorganize this so that the sequence is the same as that of encryption.

4


