Computer Science 331
Quicksort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #29

Mike Jacobson (University of Calgary) Computer Science 331

Introduction

Introduction

Outline

@ Introduction

© Deterministic Quicksort
@ Deterministic Partitioning
@ Deterministic Quicksort
@ Analysis of Deterministic Quicksort

© Randomized Quicksort

@ References

Lecture #29 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29

Introduction

Quicksort:

@ A recursive “Divide and Conquer” sorting algorithm
@ A simple deterministic version uses

@ Choose an element p and reorder the array as follows:

e pis in the correct spot if the array was sorted
o elements < p are to the left of p in the array
o elements > p are to the right of p in the array

@ Recursively sort subarray of elements to the left of p

o ©(n?) operations to sort an array of size n in the worst case

o ©O(nlog n) operations on average, assuming all relative orderings of the

(distinct) input are equally likely

© Recursively sort subarray of elements to the right of p

@ The expected number of operations used by a randomized version is Step 1 is the key to this method being efficient. Issues:

in O(nlog n) for any input array of size n

Mike Jacobson (University of Calgary) Computer Science 331

@ speed (can be done in time ©(n))

@ position of p — want the final position of p to be the middle, so the
recursive calls are on arrays of size close to half as long as the original

Lecture #29 3/23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 4 /23

Introduction Deterministic Quicksort Deterministic Partitioning

Partitioning Deterministic Partitioning

This is the process that will be used to carry out step 1.

Precondition: Idea:
e low and high are integers such that 0 < low < high < A.length @ Pivot element used is the last element in the part of the array being
- processed. Other versions of this algorithm use the first element
Postcondition:

instead.
© Value returned is an integer q such that low < q < high @ Sweep from left to right over the array, exchanging elements as
o Alh] <Alq] for every integer h such that low <h <q-—1 needed, so that values less than or equal to the pivot element are all
e A[h] > A[q] for every integer h such that g+ 1 <h <high located before values that are greater than the pivot element, in the
e If his an integer such that 0 < h < low or such that part of the array that has been processed
high < h < A.length then A[h] has not been changed

@ The entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 5/23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 6 /23

Deterministic Quicksort Deterministic Partitioning Deterministic Quicksort Deterministic Partitioning

Pseudocode
int DPartition(int[] A, int low, int high) Consider the execution of DPartition(A, 3, 10) for A as follows:
while 1. < do T2le[el1]7]3]0]5]
while i < j and A[i] <p do
i=1+1 Using p = A[10] = 5 as the pivot. Initially i =3, j = 0.
end while
while j > i and A[j] > p do increment / until / = 4, decrement j until j =9
j=3-1 3 456 7 8 9 10

if i < j then
Swap(A[i], A[j])

end if increment / until i = 7, decrement j until j =8
end while 345678 9 10
Swap(A[i], Alhigh]) i < j: swap A[7] & A[8] 5 1
return i ‘ ‘0‘4‘ ‘3‘7‘6‘5‘

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 7 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 8 /23

Deterministic Quicksort Deterministic Partitioning Deterministic Quicksort Deterministic Partitioning

Example (cont.) Loop Invariant (Main Loop)

Suppose low and high are integers such that

increment / until / = 8, decrement j until j =7 0 < low < high < length(A) and p = A[high].
i 7 o swa 3 4 5 6 7 8 9 10 The following properties identify a loop invariant for the while loop:
) P “J2J0[4[1[3[7[6]5 | - @ low<i<highand low—1<j<high—1
Qi<
i =8 and j = 7: loop terminates Q@ A/l <pforlow</<i
6] & AT 3 45 6 7 8 9 10 Q A[/] >pfor j <¢<high
swap A[8] [10] - [2]ofaf1]3][5]6]7 [- © A[h] has been unchanged for each integer h such that 0 <h < low

or high <h < A.length.

@ Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 9 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 10/ 23

Deterministic Quicksort Deterministic Partitioning Deterministic Quicksort Deterministic Partitioning

Partial Correctness Termination and Efficiency

Loop Variant: j+1—1
If the program halts then the following conditions are satisfied on

termination, if q is the value that is returned:

© q is an integer such that low < q < high. Efficiency:

@ The following relationships hold for each integer ¢ such that
low </ <high:

o if low </ < qthen A[{] <A[q], e Each examination requires (at most) a constant number of operations.
o ifq<{<rthen A[/] >A[q].

@ If his an integer such that 0 <h < low or high <h < A.length
then A[h] has not been changed. @ Since the rest of the program only uses a constant number of

@ Entries of A are reordered but otherwise unchanged operations, it is clear that the program terminates and that it uses
O(high — low) operations in the worst case.

Justification: integer valued, decreases, if = 0 loop terminates (i =/ + 1)

@ Each location of the array is examined exactly 1 time.

@ Therefore the cost to execute the loop is in O(high — low).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 11 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 12 /23

Deterministic Quicksort Deterministic Quicksort Deterministic Quicksort Analysis of Deterministic Quicksort

Quicksort Algorithm Performance of Deterministic Quicksort

Idea: Partition the array, then recursively sort the pieces before and after Performance of Quicksort depends on whether the partitioning is balanced
the pivot element. or unbalanced.

@ Worst-case Partitioning;:

Calling Sequence to sort A: quickSort(4A, 0, A.length-1) Partition produces two subarrays of size 0 and n — 1

o Best-case Partitioning:
Partition produces two subarrays of size no more than n/2
(one is of size [n/2] and one of size [n/2] — 1)

void quickSort(int[] A, int low, int high)
if low < high then
q = DPartition(A, low, high)

quickSort(A, low, g-1) ° Bala!n'ced Partitioning: ' '
quickSort(A, g+1, high) Partition produces two subarrays of proportional size a(n — 1) and
end if (I-a)(n—1)for0<a<l
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 13 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 14 /23

Deterministic Quicksort Analysis of Deterministic Quicksort Deterministic Quicksort Analysis of Deterministic Quicksort

Worst-Case Performance of Deterministic Quicksort Worst-Case Performance of Deterministic Quicksort

Let T(n) be the number of steps used by Quicksort to sort an array of
length n in the worst case. Then, for worst-case partitioning

T < {® ifn=0,1,
" |lan+T0O0)+T(n—1) ifn>2. Observation:

If Deterministic Quicksort is applied to an array of length n whose entries
are already sorted then this algorithm uses Q(n?) steps.

1 . N ,
T(n) < nco + wq —C. Conclusion: Deterministic Quicksort uses ©(n?) to sort an array of

length n in the worst case.

Method of Proof: Induction on n.

Application: Deterministic Quicksort takes O(n?) steps to sort an array
of length n in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 15 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 16 / 23

Deterministic Quicksort Analysis of Deterministic Quicksort Deterministic Quicksort Analysis of Deterministic Quicksort

Best-Case Performance of Deterministic Quicksort Average-Case Analysis of Deterministic Quicksort

Let T(”)_ be the number of steps used by Quicksor.t.to sort an array of Assumption: Entries of A are distinct and all n! relative orderings of these
length n in the best case. Then, for best-case partitioning inputs are equally likely
- Iy if n=0,1, Result: It can be established that the expected cost of Quicksort is in
(n) < cin+2T(n/2) ifn>2. O(nlog n) if the above assumption for analysis is valid (using heights of

binary search trees!).

Intuition:

@ In the average case, partition produces a mix of balanced and

T(n) < ncy + (nlog, n)cy.
(n) < nco + (nlogy n)cy unbalanced partitions.

Method of Proof: Induction on n. @ On a random input array, partition is more likely to produce a

Application: Deterministic Quicksort takes O(nlog, n) steps in the best balanced partition than an unbalanced partition.

case to sort an array of length n. @ It is unlikely that the partitioning always happens in the same way at

every recursion. Thus, unbalanced partitions will result in balanced

Corollary: Deterministic Quicksort takes O(nlog. n) steps with balanced partitions in subsequent partitions.

partitioning, where ¢ = min{é, ﬁ _

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 17 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 18 /23

Randomized Quicksort Randomized Quicksort

Randomized Partitioning Randomized Quicksort

Idea: Same as deterministic Quicksort, except that randomized

Idea: Choose the pivot element randomly from the set of values in the . OdE
partitioning is used.

part of the array to be processed. Then proceed as before.
int RPartition(int [] A, int low, int high) Call RQuickSort(A, 0, A.length-1) to sort A:
Choose i randomly and uniformly from the set of integers between low
and high (inclusive).
Swap: tmp = Ali]; Ali] = A[r]; A[r] = tmp
return DPartition(A, p, r)

void RQuickSort(int [] A, int low, int high)
if low < high then
q = RPartition(A, low, high)
RQuickSort(A, low, g-1)
RQuickSort(A, g+1, high)

Efficiency: This algorithm terminates using O(high — low) operations. end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 19 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 20 / 23

Randomized Quicksort

Analysis of Randomized Quicksort

The previous analysis can be modified to establish that the “worst-case
expected cost” of Randomized Quicksort to sort an array with distinct
entries is in O(nlog n) as well.

Note: it is possible to obtain a worst-case running time of ©(nlog n)

o careful (but deterministic) selection of the pivot (see Introduction to
Algorithms, Chapter 9.3)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 21 /23

References

References

Further Reading:
@ Introduction to Algorithms, Chapter 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29 23 /23

Randomized Quicksort

An Annoying Problem

An Annoying Problem: Both versions of Quicksort, given above, use
©(n?) operations to “sort” an array of length n if the array contains n
copies of the same value!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #29

22/ 23

	Introduction
	Deterministic Quicksort
	Deterministic Partitioning
	Deterministic Quicksort
	Analysis of Deterministic Quicksort

	Randomized Quicksort
	References

