Computer Science 331

Binary Search Trees

Mike Jacobson

Department of Computer Science University of Calgary

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

The Dictionary ADT

The Dictionary ADT

A dictionary is a finite set (no duplicates) of elements.

Each element is assumed to include

- A key, used for searches.
 - Keys are required to belong to some ordered set.
 - The keys of the elements of a dictionary are required to be distinct.
- Additional data, used for other processing.

Permits the following operations:

- search by key
- insert (key/data pair)
- delete an element with specified key

Similar to Java's Map (unordered) and SortedMap (ordered) interfaces.

Outline

- The Dictionary ADT
- 2 Binary Trees
 - Definitions
 - Relationship Between Size and Height
- Binary Search Trees
 - Definition
 - Searching
 - Finding an Element with Minimal Key
 - BST Insertion
 - BST Deletion
 - Complexity Discussion
- References

Binary Trees

Binary Tree

A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes.

A binary tree *T* is **either**

an "empty tree,"

or

- a structure that includes
 - the **root** of T (the node at the top)
 - the **left subtree** T_L of T ...
 - the **right subtree** T_R of T ...

... where both T_L and T_R are also binary trees.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #18-19 Lectures #18-19 Mike Jacobson (University of Calgary) Computer Science 331

Example and Implementation Details

Example:

Each node has a:

- parent: unique node above a given node
- left child: node in left subtree directly below a given node (root of left subtree)
- right child: node in right subtree directly below a given node (root of right subtree)

Each of these may be null

Mike Jacobson (University of Calgary)

Note: depth and height are sometimes (as in the text) defined in terms of

• descendant (of N): any node occurring in the tree with root N

• depth (of N): length (# of edges) of path from the root to N

• ancestor (of N): root of any tree containing node N

• height: length of longest path from root to a leaf

number of nodes as opposed to number of edges.

Relationship Between Size and Height

Size vs. Height: One Extreme

- Size: 7
- Height: 2
- Relationship:

$$n = 1 + 2 + 4 = \sum_{i=0}^{h} 2^{i}$$
$$= 2^{h+1} - 1.$$

This binary tree is said to be full:

- all leaves have the same depth
- all non-leaf nodes have exactly two children

and

$$h = \log_2(n+1) - 1$$

Upper bound: a binary tree of height h has size at most $2^{h+1} - 1$.

Additional Terminology

Additional terms related to binary trees:

• leaf: node with no children

(height(emptytree) = -1)

• size: number of nodes in the tree

• siblings: two nodes with the same parent

Relationship Between Size and Height

Size vs. Height: Another Extreme

- Size: 5
- Height: 4
- Relationship: n = h + 1

Essentially a linked list!

Lower bound: a binary tree with height h has size at least h + 1.

Mike Jacobson (University of Calgary)

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Binary Search Trees

Binary Search Tree

A binary search tree T is a data structure that can be used to store and manipulate a finite ordered set or mapping.

- T is a binary tree
- Each element of the dictionary is stored at a node of T, so

set size = size of
$$T$$

• In order to support efficient searching, elements are arranged to satisfy the Binary Search Tree Property ...

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Binary Search Trees

Example

One binary search tree for a dictionary including elements with keys

$$\{1, 3, 5, 6, 7, 10\}$$

Binary Search Tree Property

Binary Search Tree Property: If *T* is nonempty, then

Binary Search Trees

- The left subtree T_L is a binary search tree including all dictionary elements whose keys are *less than* the key of the element at the root
- The right subtree T_R is a binary search tree including all dictionary elements whose keys are greater than the key of the element at the root

Binary Search Trees Definition

Binary Search Tree Data Structure

```
public class BST<E extends Comparable<E>,V> {
  protected bstNode<E,V> root;
  protected class bstNode<E,V> {
    E key;
    V value;
    bstNode<E,V> left;
    bstNode<E,V> right;
}
```

bstNode can also include a reference to its parent

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Specification of "Search" Problem:

Precondition 1:

- a) T is a BST storing values of some type V along with keys of type E
- b) key is an element of type E stored with a value of type V in T

Postcondition 1:

- a) Value returned is (a reference to) the value in T with key key
- b) T and key are not changed

Precondition 2: same, but key is not in T Postcondition 2:

- a) A notFoundException is thrown
- b) T and key are not changed

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Binary Search Trees Searching

A Recursive Search Algorithm

```
public V search(bstNode<E,V> T, E key)
    throws notFoundException {
  if (T == null)
    throw new notFoundException();
  else if (key.compareTo(T.key) == 0)
    return T.value;
  else if (key.compareTo(T.key) < 0)</pre>
    return search(T.left, key);
  else
    return search(T.right, key);
}
```

Searching: An Example

Searching for 5:

Nodes Visited

- Start at 6: since 5 < 6, search in left subtree
- Next node 3 : since 5 > 3, search in right subtree
- Next node 5 : equal to key, so we're finished

Mike Jacobson (University of Calgary)

Lectures #18-19

Binary Search Trees

Partial Correctness

Proved by induction on the height of T:

- \bullet Base case is correct (empty tree, height -1)
- 2 Assume that the algorithm is partially correct for all trees of height $\leq h - 1$. By the BST property:
 - if key == root.key, correctness of output is clear by inspection of
 - otherwise, by the BST property:
 - if key < root.key, it is in the left subtree (or not in the tree)
 - otherwise key > key.root and it must be in the right subtree (or not

In either case, algorithm is called recursively on a subtree of height at most h-1 and outputs correct result by assumption.

Termination and Running Time

Let Steps(T) be the number of steps used to search in a BST T in the worst case. Then there are positive constants c_1 , c_2 and c_3 such that

$$ext{Steps}(\mathtt{T}) \leq egin{cases} c_1 & ext{if height}(\mathtt{T}) = -1, \ c_2 & ext{if height}(\mathtt{T}) = 0, \ c_3 + ext{max}(\mathtt{Steps}(\mathtt{T.left}), \mathtt{Steps}(\mathtt{T.right})) & ext{if height}(\mathtt{T}) > 0. \end{cases}$$

Exercise: Use this to prove that

$$Steps(T) \le c_3 \times height(T) + max(c_1, c_2)$$

Exercise: Prove that $Steps(T) \ge height(T)$ as well.

 \implies The worst-case cost to search in T is in $\Theta(\text{height}(T))$.

Mike Jacobson (University of Calgary)

Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

```
// Precondition: T is non-null
// Postcondition: returns node with minimal key,
     null if T is empty
public bstNode<E,V> findMin(bstNode<E,V> T) {
  if (T == null)
    return null;
  else if (T.left == null)
    return T;
  else
    return findMin(T.left);
}
```

Finding an Element with Minimal Key

Minimum Finding: The Idea

Idea: value in a node is the minimum if the node has no left child

- recursively (or iteratively) visit left children
- first node with no left child encountered contains the minimum key

Example: minimum is 1

Mike Jacobson (University of Calgary)

Computer Science 331

Binary Search Trees Finding an Element with Minimal Key

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

- after each recursive call, the height is reduced by at least 1
- worst case running time is $\Theta(h)$ (and hence $\Theta(n)$)

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Mike Jacobson (University of Calgary)

Computer Science 331

Insertion: An Example

Idea: use search to find empty subtree where node should be

Nodes Visited (inserting 9):

- Start at 6: since 9 > 6, new node belongs in right subtree
- Next node 10 : since 9 < 10, new node belongs in left subtree
- Next node 7 : since 9 > 7, new node belongs in right subtree
- Next node null: insert new node at this point

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Analysis: Correctness and Running Time

Partial Correctness (tree of height *h*):

• Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

- worst case running time is $\Theta(h)$ (and hence $\Theta(n)$)
- Proof: exercise

Binary Search Trees BST Insertion

A Recursive Insertion Algorithm

```
// Non-recursive public function calls recursive worker function
public void insert(E key, V value)
  { root = insert(root, key, Value); }
protected
bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {
  if (T == null)
    T = new bstNode<E, V>(newKey, newValue, null, null);
  else if (newKey.compareTo(T.key) < 0)</pre>
    T.left = insert(T.left, newKey, newValue);
  else if (newKey.compareTo(T.key) > 0)
    T.right = insert(T.right, newKey, newValue);
    throw new FoundException();
  return T;
```

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Deletion: Four Important Cases

Key is/has ...

Not Found (Eg: Delete 8)

At a Leaf (Eg: Delete 7)

3 One Child (Eg: Delete 10)

Two Children (Eg: Delete 6)

First Case: Key Not Found

Idea: search for key 8, throw notFoundException when not found

Nodes Visited (delete 8):

• Start at 6 : since 8 > 6, delete 8 from right subtree

• Next node 10 : since 8 < 10, delete 8 from left subtree

• Next node 7 : since 8 > 7, delete 8 from right subtree

• Next node null: conclude that 8 is not in the tree

Mike Jacobson (University of Calgary)

Computer Science 331

Second Case: Key is at a Leaf

Idea: set appropriate reference in parent to null

Nodes Visited (delete 7):

• Start at 6 : since 7 > 6, delete 7 from right subtree

- test detects whether the node is a leaf
- replacing T with null deletes the leaf at T
- removing a leaf does not affect BST property
- worst-case cost is $\Theta(h)$ for this case $(\Theta(h))$ to locate leaf, $\Theta(1)$ to remove it)

Algorithm and Analysis

```
protected bstNode<E,V> delete(bstNode<E,V> T, E key) {
  if (T != null) {
    if (key.compareTo(T.key) < 0)</pre>
      T.left = delete(T.left, key);
    else if (key.compareTo(T..key) > 0)
      T.right = delete(T.right,key);
    else if ...
      // found node with given key
  }
  else
    throw new notFoundException();
  return T;
```

Correctness and Efficiency For This Case:

- tree is not modified if key is not found (base case will be reached)
- worst-case cost $\Theta(h)$ (same as search)

Mike Jacobson (University of Calgary)

Binary Search Trees

Algorithm and Analysis

else if (T.left == null && T.right == null)

T = null;

Mike Jacobson (University of Calgary)

```
Correctness and Efficiency For This Case:
```

• Next node 10 : since 7 < 10, delete 7 from left subtree

• Next node 7 : set reference to left child of parent to null

Third Case: Key is at a Node with One Child

Idea: remove node, put the one subtree in its place

Nodes Visited (delete 10):

- Start at 6 : since 10 > 6, delete 10 from right subtree
- Next node 10 : set reference to right child of parent to child of 10

Mike Jacobson (University of Calgary)

Lectures #18-19

Lectures #18-19

Binary Search Trees BST Deletion

Fourth Case: Key is at a Node with Two Children

Idea: replace node with its successor (minimum in the right subtree)

Nodes Visited (delete 6):

- Start at 6: found node to delete
- replace data at node with data from the node of minimum key in the right subtree
- delete node with minimal key from the right subtree

Algorithm and Analysis

Extension of Algorithm:

```
else if (T.left == null)
  T = T.right;
else if (T.right == null)
  T = T.left;
```

Correctness and Efficiency For This Case:

- T is replaced with its one non-empty subtree
 - node originally at T is deleted
 - BST property still holds (new subtree at T still contains keys that were in the old subtree)
- worst case cost is $\Theta(h)$ ($\Theta(h)$ to locate node, $\Theta(1)$ to remove it)

Mike Jacobson (University of Calgary)

Algorithm and Analysis

Extension of Algorithm:

```
else {
  bstNode<E,V> min = findMin(T.right);
 T.key = min.key; T.value = min.value;
 T.right = delete(T.right, T.key);
```

Binary Search Trees

Correctness and Efficiency For This Case:

- BST property holds: all entries in the new right subtree have keys > the smallest key from the original right subtree
- worst case cost is $\Theta(h)$:
 - findMin costs $\Theta(h)$ (from last lecture)
 - recursive call deletes a node with at most one child from a tree of height $< h \text{ (cost is } \Theta(h))$

More on Worst Case

All primitive operations (search, insert, delete) have worst-case complexity $\Theta(n)$

- all nodes have exactly one child (i.e., tree only has one leaf)
- Eg. will occur if elements are inserted into the tree in ascending (or descending) order

On average, the complexity is $\Theta(\log n)$

- Eg. if the tree is full, the height of the tree is $h = \log_2(n+1) 1$
- the height of a randomly constructed tree (inserting *n* elements uniformly randomly) is $3 \log_2 n$ for sufficiently large n (see lecture supplement)

Need techniques to ensure that all trees are close to full

- want $h \in \Theta(\log n)$ in the worst case
- one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #18-19

Introduction to Algorithms, Chapter 12

References

and,

References

Data Structures: Abstraction and Design Using Java, Chapter 6.1-6.4

Mike Jacobson (University of Calgary)

Computer Science 331