Outline

© Introduction
Computer Science 331 © Selection Sort

Classical Sorting Algorithms @ Description
@ Analysis

© Insertion Sort
@ Description

Department of Computer Science) Analysis
University of Calgary

Mike Jacobson

@ Bubble Sort
Lecture #16-17 @ Description

© Comparisons
© Reference

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 1/32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17

Introduction Introduction

The “Sorting Problem” Two Classical Algorithms

Precondition: Discussed today: two “classical” sorting algorithms
A: Array of length n, for some integer n > 1, o Reasonably simple

storing objects of some ordered type o Work well on small arrays

@ Each can be used to sort an array of size n using ©(n?) operations

Postcondition: (comparisons and exchanges of elements) in the worst case
A: Elements have been permuted (reordered) @ None is a very good choice to sort large arrays: asymptotically faster
but not replaced, in such a way that algorithms exist!

Alil <A[i+1] for0<i<n-—1

A third (bubble sort) will be considered in the tutorials.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 3/32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 4 /32

Selection Sort ~ Description Selection Sort ~ Description

Selection Sort Pseudocode

void Selection Sort(int [] A)
for i from 0 to n— 2 do

Idea: . .
Repeatedly find “ith-smallest” el d exchange it with th o=t
° Iepeate. yI in . i :L\sma est” element and exchange it with the for j from i+ 1to n—1do
element in location A/ if Alj] < A[min] then
o Result: After it" exchange, min = j
] end if
A[0], A[1],. .., A[i — 1] end for
. . .) Swap A[i] and A[min
are the / smallest elements in the entire array, in sorted order — and {Swap [I] [min]}
: tmp = A[/]
array elements have been reordered but are otherwise unchanged :)
Ali] = A[min]
A[min] = tmp
end for
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 5/ 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 6 /32

Selection Sort ~ Description Selection Sort = Description

Example (cont.)

Ar[2]6[3]1]4] =2
Idea: find smallest element in A[i], ..., A[4] for each i from 0 to n — 1 @ set min =2 (A[2] = 3 is minimum of A[2],..., A[4])
i=0 o swap A[2] and A[2] (A[0], A[1], A[2] sorted)
e set min =3 (A[3] =1 is minimum of A[Q], ..., A[4]) A[1]2]3]6]4]
e swap A[0] and A[3] (A[0] sorted)
A:[1]6[3]2]4] i=3
o set min = 4 (A[4] = 4 is minimum of A[3], A[4])
=1 o swap A[3] and A[4] (A[0], A[1], A[2], A[3] sorted)
e set min =3 (A[3] = 2 is minimum of A[1],...,A[4]) A[1]2]3]4]6]
e swap A[1] and A[3] (A[0], A[1] sorted)
A[1]2]3]6]4] Finished! A[0], ..., A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 7 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 8 /32

Selection Sort ~ Analysis Selection Sort Analysis

Inner Loop: Semantics Inner Loop: Loop Invariant

The inner loop is a for loop, which does the same thing as the following Loop Invariant: At the beginning of each execution of the inner loop
code (which includes a while loop): body
j=i+1 @ i,mine N
while j < n do e First subarray (with size i) is sorted with smallest elements:
if (A[j] < A[min]) then 0 0<i<n-2
min = j o Al <Ah+1]for0<h<i—2
end if o if i>0then A[i —1] < A[h] fori<h<n-1
j=j+1 @ Searching for the next-smallest element:
end while e i+1<j<n
o i< min<j
We will supply a “loop invariant” and “loop variant” for the above while o Almin] < A[h] for i < h <j
loop in order to analyze the behaviour of the corresponding for loop o Entries of A have been reordered; otherwise unchanged
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 9/32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 10 / 32

Selection Sort ~ Analysis Selection Sort ~ Analysis

Inner Loop: Interpretation of the Loop Invariant Application of the Loop Invariant

all > Afi — 1]

A: | | i—1]i] | j—-11/] Loop invariant, final execution of the loop body, and failure of the loop
test ensures that:

sorted A[min] smallest @ j = n immediately after the final execution of the inner loop body

e i < min < n and A[min] < A[{] for all £ such that i < ¢ < n

Interpretation: e A[min] > A[h] for all hsuch that 0 < h < i

o AD] <AL < < Ali—1]
o If i > 0 then A[i — 1] < A[/] for every integer ¢ such that i < ¢ <n

e i < min<j—1and Almin] < A[h] for every integer h such that
i<h<j—1

@ entries of A have been reordered, otherwise unchanged

In other words, A[min] is the value that should be moved into position A[i]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 11 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 12 /32

Selection Sort ~ Analysis Selection Sort Analysis

Inner Loop: Loop Variant and Application Outer Loop: Semantics

The outer loop is a for loop whose index variable / has values from 0

Loop Variant: f(n,i,j)=n—j to n — 2, inclusive

@ decreasing integer function

e when f(n,i,j) = 0 we have j = n and the loop terminates This does the same thing as a sequence of statements including
@ an initialization statement, i =0
Application: @ a while loop with test “i < n — 2" whose body consists of the body
@ initial valueis j=i+1 of the for loop, together with a final statement i =/ +1

@ worst-case number of iterations is
f(ni,i+1)=n—(i+1)=n—-1— We will provide a loop invariant and a loop variant for this while loop in
order to analyze the given for loop

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 13 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 14 / 32

Selection Sort ~ Analysis Selection Sort ~ Analysis

Outer Loop: Loop Invariant and Loop Variant Analysis of Selection Sort

Loop Invariant: At the beginning of each execution of the outer loop
body

@ /is an integer such that 0 </ <n-—1
o A[hl < Alh+1]for0<h<i—1
o ifi>0,Ai —1] < A[{] fori </l <n

@ Entries of A have been reordered; otherwise unchanged

Worst-case:
@ inner loop iterates n — 1 — j times (constant steps per iteration)
@ outer loop iterates n — 1 times

@ total number of steps is at most
Thus: A[0],...,A[i — 1] are sorted and are the i smallest elements in A .
co + Z aln—1—

Loop Variant: f(n,i)=n—1—i
® decreasing integer function Conclusion: Worst-case running time is in ©(n?)
@ when f(n,i) =0 we have i = n— 1 and the loop terminates

@ worst-case number of iterations is f(n,0) = n—1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 15 / 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 16 / 32

Selection Sort ~ Analysis Insertion Sort ~ Description

Analysis of Selection Sort, Concluded Insertion Sort

Best-Case: Idea:

@ Both loops are for loops and a positive number of steps is used on ® Sort progressively larger subarrays

each execution of the inner loop body @ n—1stages, fori=1,2,...,n—1

o At the end of the it" stage

@ Total number of steps is therefore at least
o Entries originally in locations

n—2
G+ a(n—1-i)eQ(n? A[0], A[L], ..., A[i]
=0 have been reordered and are now sorted
o Entries in locations
Conclusion: Every application of this algorithm to sort an array of Ali +1,Ali +2],...,Aln — 1]

2
length n uses ©(n) steps have not yet been examined or moved

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 17 / 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 18 / 32

Insertion Sort Description Insertion Sort Description

Pseudocode

A[2][6]3[1]4]

void Insertion Sort(int [] A) Idea: insert A[i] in the correct position in A[0],..., A[i — 1]
for i from 1 to n— 1 do e initially, i = 0 and A[0] = 2 is sorted

J=i ;

while ((j > 0) and (A[j] < Aj — 1])) do i=1
{Swap A[j — 1] and A[j]} @ Nno swaps
tmp = A[j] o A[0], A[1] sorted
Al = Al —1] A[2]6]3]1[4]
Alj — 1] = tmp
Jj=J-1 o

end while L=

e swap A[2] & A[l]
e A[0], A[1], A[2] sorted
Ar[2]3]6]1]4]

end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 19 / 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 20 / 32

Insertion Sort Description Insertion Sort Analysis

Example (cont.) Inner Loop: Loop Invariant

i=3
o swap A[3] & A[2], swap A[2] & A[1], swap A[1] & A[0] Loop Invariant: at the beginning of each execution of the inner loop
e A[0], A[1], A[2], A[3] sorted body

A[1]2]3]6]4]

e i jeN

e l<i<nandO<j<i

o A[h] < Alh+1]for0<h<j—landj<h<i
e if j>0andj<ithen A[j — 1] < A[j + 1]

@ Entries of A have been reordered; otherwise unchanged

=4

e swap A[4] & A[3]

e A[0], A[1], A[2], A[3], A[4] sorted
A:[1]2]3]4]6]

Finished! A[0], ..., A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 21 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 22 / 32

Insertion Sort ~ Analysis Insertion Sort ~ Analysis

Inner Loop: Interpretation of Loop Invariant Inner Loop: Loop Variant and Application

A: | -1 [jfi+t] [7]
e e g Loop Variant: f(n,i,j) =
@ decreasing integer function

Can be used to establish that the following holds at the end of each e when f(n,i,j) = 0 we have j = 0 and the loop terminates
execution of the inner loop body:

@ jand j are integers such that 0 <j </i—-1<n—-2 Application:

e A[0],...,A[j — 1] are sorted e initial value is i

e A[j],...,A[i] are sorted (so that A[0],..., A[/] are sorted if j = 0) @ worst-case number of iterations is i

e if j>0andj < i, then A[j — 1] < A[j + 1], so that A[0],..., A[i] are

sorted if A[j — 1] < A[J]

It follows that A[Q], ..., A[i] are sorted when this loop terminates.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 23 / 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 24 / 32

Insertion Sort ~ Analysis Insertion Sort ~ Analysis

Outer Loop: Semantics Outer Loop

) _ . Loop Invariant: at the beginning of each execution of the outer loop
Once again, the outer for loop can be rewritten as a while loop for body:

analysis. Since the inner loop is already a while loop, the new outer while

e 1<i<n
loop would be as follows.
e A[0], A[1],...,A[i — 1] are sorted
i=1 @ Entries of A have been reordered; otherwise unchanged.
while i < n—-1do
j=i Thus, the loop invariant, final execution of the loop body, and failure of
Inner loop of original program the loop test establish that
P=i+1 e A[0],...,A[i — 1] are sorted,
end while

@ as i = n when the loop terminates, A is sorted

This program will be analyzed in order establish the correctness and

efficiency of the original one. Loop Variant: f(n,i) =n—1

@ number of iterations is f(n,1) =n—1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 25 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 26 / 32

Insertion Sort ~ Analysis Insertion Sort ~ Analysis

Analysis of Insertion Sort Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer n > 1 consider the operation

on this algorithm on an input array A such that

Worst-case: o the length of Ais n

@ inner loop iterates / times (constant steps per iteration) o the entries of A are distinct

@ outer loop iterates n — 1 times
P @ A is sorted in decreasing order, instead of increasing order

@ total number of steps is at most _) _) o
It is possible to show that the algorithm uses Q(n®) steps on this input

n—1
] nln—1 array.
C0+ZC11 =+ C1(2)
i=1 Conclusion: The worst-case running time is in ©(n?)
- 2 .
Conclusion: Worst-case running time is in O(n?) Best-Case: O(n) steps are used in the best case
@ Proof: Exercise. Consider an array whose entries are already sorted as
part of this.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 27 / 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 28 / 32

Bubble Sort Description Bubble Sort Description

Bubble Sort Pseudocode

Idea: void Bubble Sort(int [] A)
for i from 0 to n—1 do
for j from n — 2 down to / do
if Alj] > A[j + 1] then
{Swap A[j] and A[j + 1]}

@ Similar, in some ways, to “Selection Sort”

@ Repeatedly sweep from right to left over the unsorted (rightmost)
portion of the array, keeping the smallest element found and moving

it to the left ;

tmp = A[j]
o Result: After the it stage, Alj] = Alj + 1]
, Alj + 1] = tmp

AlO], ALLL, .., Ali — 1] o
are the / smallest elements in the entire array, in sorted order end for
end for
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 29 /32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 30/ 32

Comparisons Reference

Comparisons Reference

All three algorithms have worst-case complexity ©(n?)

@ Selection sort only swaps O(n) elements, even in the worst case. This
is an advantage when exchanges are more expensive than

comparisons. Introduction to Algorithms, Chapter 2.1
@ On the other hand, Insertion sort has the best “best case” complexity.
It also performs well if the input as already partly sorted. and,
@ Bubble sort is generally not used in practice. Data Structures: Abstraction and Design Using Java, Chapter 8.1-8.5

Note: Asymptotically faster algorithms exist and will be presented later.
These “asymptotically faster” algorithms are better choices when the input
size is large and worst-case performance is critical.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 31/ 32 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #16-17 32 /32

	Introduction
	Selection Sort
	Description
	Analysis

	Insertion Sort
	Description
	Analysis

	Bubble Sort
	Description

	Comparisons
	Reference

