
Computer Science 331
Algorithms for Searching

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #15

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 1 / 23

Outline

1 Searching in an Unsorted Array
The Searching Problem
Linear Search

2 Searching in a Sorted Array
The Searching Problem
Linear Search
Binary Search

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 2 / 23

Searching in an Unsorted Array The Searching Problem

The “Searching” Problem

Precondition 1:

a) A is an array with length A.length = n ≥ 1 storing values of some
type T

b) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 3 / 23

Searching in an Unsorted Array The Searching Problem

The “Searching” Problem, continued

Precondition 2:

a) A is an array with length A.length = n ≥ 1 storing values of some
type T

b) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 4 / 23

Searching in an Unsorted Array Linear Search

Linear Search

Idea: Compare A[0],A[1],A[2], . . . to key until either

key is found, or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and (A[i] 6= key) do
i = i + 1

end while

if i < n then
return i

else
throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 5 / 23

Searching in an Unsorted Array Linear Search

Correctness and Efficiency

Correctness: covered in Tutorial 2

Efficiency:

worst-case number of iterations is n

loop body runs in constant time

so worst-case runtime of LinearSearch is in Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 6 / 23

Searching in a Sorted Array The Searching Problem

The “Searching” Problem in a Sorted Array

Precondition 1:

a) A is an array with length A.length = n ≥ 1 storing values of some
ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 ≤ i < n − 1

c) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 7 / 23

Searching in a Sorted Array The Searching Problem

The “Searching” Problem in a Sorted Array

Precondition 2:

a) A is an array with length A.length = n ≥ 1 storing values of some
ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 ≤ i < n − 1

c) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 8 / 23

Searching in a Sorted Array Linear Search

Linear Search

Idea: compare A[0],A[1],A[2], . . . to k until either key is found or

we see a value larger than key — all future values will be larger
than key as well! — or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and (A[i] < key) do
i = i + 1

end while

if (i < n) and (A[i] = key) then
return i

else
throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 9 / 23

Searching in a Sorted Array Linear Search

Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of
each execution of the loop body:

i is an integer such that 0 ≤ i < n

A[j] < key for 0 ≤ j ≤ i

A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of
the loop body (i)

Base Case:

before first execution of loop body we have i = 0

loop test passes, implying that A[0] < key

A and key have not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 10 / 23

Searching in a Sorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least i ≥ 0
times and that the loop invariant is satisfied at the beginning of the ith
execution.

By inspecting the code, we see that at the end of the ith execution:

0 ≤ i ≤ n

A[j] < key for 0 ≤ j < i

A and key have not been changed

If there is a i + 1st execution of the loop body, then the loop test must
pass after the end of the ith execution (so i < n and A[i] < key), implying
that immediately before the i + 1st execution:

0 ≤ i < n

A[j] < key for 0 ≤ j ≤ i

A and key have not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 11 / 23

Searching in a Sorted Array Linear Search

Partial Correctness (applying the loop invariant)

At the end of the loop (loop condition fails), the following properties are
satisfied:

i is an integer such that 0 ≤ i ≤ n

A[j] < key for 0 ≤ j < i

A and key have not been changed

Either i = n or i < n and A[i] ≥ key

Conclusion: algorithm postconditions are satisfied because

Case 1 (i = n): loop invariant implies that A[j] < key for 0 ≤ j < n,
so key is not in A and KeyNotFoundException is thrown

Case 2 (i < n and A[i] = key): key is found and i is returned

Case 3 (i < n and A[i] > key): loop invariant implies that A[j] < key
for 0 ≤ j < i , so key is not in A and KeyNotFoundException is
thrown

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 12 / 23

Searching in a Sorted Array Linear Search

Termination and Efficiency

Loop Variant: f (n, i) = n − i

Proving the Loop Variant:

f (n, i) is a decreasing integer function because integer i increases by
one after each loop body execution

f (n, i) = 0 when i = n, loop terminates (worst case) when i ≥ n

Application of Loop Variant:

existence demonstrates termination

worst-case number of iterations is f (n, 0) = n

loop body runs in constant time, so worst-case runtime of
LinearSearch is Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 13 / 23

Searching in a Sorted Array Binary Search

Binary Search

Idea: suppose we compare key to A[i]

if key > A[i] then key > A[h] for all h ≤ i .

if key < A[i] then key < A[h] for all h ≥ i .

Thus, comparing key to the middle of the array tells us a lot:

can eliminate half of the array after the comparison

int binarySearch(T key)

return bsearch(0, n − 1, key)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 14 / 23

Searching in a Sorted Array Binary Search

Specification of Requirements for Subroutine

Calling Sequence: int bsearch(int low , int high, int key)

Preconditions 1 and 2: add the following to the corresponding
precondition in the “Searching in a Sorted Array” problem:

d) low and high are integers such that

0 ≤ low ≤ n
−1 ≤ high ≤ n − 1
low ≤ high + 1
A[h] < key for 0 ≤ h < low
A[h] > key for high < h ≤ n − 1

The corresponding postcondition can be used without change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 15 / 23

Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine

int bsearch(int low , int high, T key)

if low > high then
throw KeyNotFoundException

else
mid = b(low + high)/2c
if (A[mid] > key) then
return bsearch(low , mid − 1, key)

else if (A[mid] < key) then
return bsearch(mid + 1, high, key)

else
return mid

end if
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 16 / 23

Searching in a Sorted Array Binary Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 18 in the array A :

bsearch(0,10,18): mid = (0 + 10)/2 = 5, A[5] = 23 > 18

bsearch(0,4,18): mid = (0 + 4)/2 = 2, A[2] = 6 < 18

bsearch(3,4,18): mid = (3 + 4)/2 = 3, A[3] = 18

Return 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 17 / 23

Searching in a Sorted Array Binary Search

Partial Correctness

Induction on the length n = high − low + 1 of the subarray
A[low], . . . ,A[high]

Inductive Hypothesis: Calls to bsearch within the code (subarray length
< n) behave as expected

Base Case: low > high (n = 0)

no elements — throw KeyNotFoundException (correct)

Inductive Step: low ≤ high (n > 0)

return mid if A[mid] = key (correct)

recursive call (correct by assumption). Should verify that:

preconditions of bsearch are satisfied for the recursive call
size of subarray in recursive call is < n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 18 / 23

Searching in a Sorted Array Binary Search

Efficiency and Termination

To search in array of size n:

1 if n is odd: recursively search subarrays of size n−1
2

2 if n is even: recursively search subarrays of sizes n
2 − 1 and n

2

Summary: largest subarray is of size bn2c

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 19 / 23

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

T (n): number of steps to search in array of size n

T (n) ≤

{
c1 if n = 0

c2 + T (bn2c) if n ≥ 1

for some constants c2 > c1 > 0.

Expand the recurrence relation:

T (n) ≤ c2 +
(
c2 + T (b n

22
c)
)

= 2c2 + T (b n
22
c)

≤ · · ·

≤ kc2 + T (b n
2k
c)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 20 / 23

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

T (n): number of steps to search in array of size n

Recursion until b n
2k
c = 0 =⇒ k = blog2 nc+ 1

Therefore, T (n) ≤ c2blog2 nc+ c1

Can be shown that T (n) ≥ c log2 n

searching for an element greater (smaller) than the largest (smallest)
element in the array

Conclusion: T (n) ∈ Θ(log2 n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 21 / 23

Searching in a Sorted Array Binary Search

A Note on the Analysis

When analyzing algorithms, sometimes we encounter the operators bc and
de

In general, these operators do not change the asymptotic running
time of algorithms

We usually ignore them, e.g., as if n was a complete power of 2 (will
be more formally justified in CPSC 413)

Binary Search Algorithm:

T (n) ≤ kc2 + T (n
2k

)

Therefore, k = log2 n + 1 =⇒ T (n) ≤ c2(log2 n + 1) + c1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 22 / 23

Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary
search

arrays with Object or generic entries, or entries of any basic type

slightly different pre and postconditions than presented here

Data Structures: Abstraction and Design Using Java

by Elliot B. Koffman and Paul A. T. Wolfgang

Section 5.3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 23 / 23

	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search

