Computer Science 331

Algorithms for Searching

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #15

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #15

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #15

Searching in an Unsorted Array

The Searching Problem

The "Searching" Problem

Precondition 1:

- a) A is an array with length A.length = $n \ge 1$ storing values of some type T
- b) key is a value of type T that is stored in A

Postcondition 1:

- a) The value returned is an integer i such that A[i] = key
- b) A and key are not changed

Outline

- Searching in an Unsorted Array
 - The Searching Problem
 - Linear Search
- Searching in a Sorted Array
 - The Searching Problem
 - Linear Search
 - Binary Search

The "Searching" Problem, continued

Precondition 2:

- a) A is an array with length A.length = $n \ge 1$ storing values of some type T
- b) key is a value of type T that is not stored in A

Postcondition 2:

- a) A notFoundException is thrown
- b) A and key are not changed

Computer Science 331 Computer Science 331 Lecture #15 Mike Jacobson (University of Calgary) Lecture #15 Mike Jacobson (University of Calgary)

Searching in an Unsorted Array

Searching in an Unsorted Array

Linear Search

Idea: Compare $A[0], A[1], A[2], \ldots$ to key until either

- key is found, or
- we run out of entries to check

```
int LinearSearch(T key)
```

```
i = 0
while (i < n) and (A[i] \neq key) do
  i = i + 1
end while
```

if i < n then return i else

throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary)

Computer Science 331

Correctness and Efficiency

Correctness: covered in Tutorial 2

Efficiency:

- worst-case number of iterations is n
- loop body runs in constant time
- so worst-case runtime of **LinearSearch** is in $\Theta(n)$

Mike Jacobson (University of Calgary)

Computer Science 331

Searching in a Sorted Array The Searching Problem

Lecture #15

The "Searching" Problem in a Sorted Array

Precondition 1:

- a) A is an array with length A.length = n > 1 storing values of some ordered type T
- b) A[i] < A[i+1] for every integer i such that $0 \le i < n-1$
- c) key is a value of type T that is stored in A

Postcondition 1:

- a) The value returned is an integer i such that A[i] = key
- b) A and key are not changed

The "Searching" Problem in a Sorted Array

Precondition 2:

- a) A is an array with length A.length = n > 1 storing values of some ordered type T
- b) A[i] < A[i+1] for every integer i such that $0 \le i < n-1$
- c) key is a value of type T that is not stored in A

Postcondition 2:

- a) A notFoundException is thrown
- b) A and key are not changed

Searching in a Sorted Array

Linear Search

Idea: compare $A[0], A[1], A[2], \ldots$ to k until either key is found or

- we see a value larger than key all future values will be larger than key as well! — or
- we run out of entries to check

```
int LinearSearch(T key)
  i = 0
  while (i < n) and (A[i] < key) do
    i = i + 1
  end while
  if (i < n) and (A[i] = key) then
    return i
  else
    throw KeyNotFoundException
  end if
```

Mike Jacobson (University of Calgary)

Searching in a Sorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least $i \ge 0$ times and that the loop invariant is satisfied at the beginning of the ith execution.

By inspecting the code, we see that at the *end* of the *i*th execution:

- $0 \le i \le n$
- A[j] < key for $0 \le j < i$
- A and key have not been changed

If there is a i + 1st execution of the loop body, then the loop test must pass after the end of the ith execution (so i < n and A[i] < key), implying that immediately before the i + 1st execution:

- 0 < i < n
- A[j] < key for $0 \le j \le i$
- A and key have not been changed

Searching in a Sorted Array

Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of each execution of the loop body:

- i is an integer such that $0 \le i < n$
- A[i] < key for 0 < i < i
- A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of the loop body (i)

Base Case:

- before first execution of loop body we have i = 0
- loop test passes, implying that A[0] < key
- A and key have not been changed

Mike Jacobson (University of Calgary)

Searching in a Sorted Array Linear Search

Partial Correctness (applying the loop invariant)

At the end of the loop (loop condition fails), the following properties are satisfied:

- i is an integer such that 0 < i < n
- A[i] < key for 0 < i < i
- A and key have not been changed
- Either i = n or i < n and $A[i] \ge key$

Conclusion: algorithm postconditions are satisfied because

- Case 1 (i = n): loop invariant implies that A[j] < key for $0 \le j < n$, so key is not in A and KeyNotFoundException is thrown
- Case 2 (i < n and A[i] = key): key is found and i is returned
- Case 3 (i < n and A[i] > key): loop invariant implies that A[j] < keyfor $0 \le j < i$, so key is not in A and KeyNotFoundException is thrown

Searching in a Sorted Array

Termination and Efficiency

Loop Variant: f(n, i) = n - i

Proving the Loop Variant:

- f(n, i) is a decreasing integer function because integer i increases by one after each loop body execution
- f(n, i) = 0 when i = n, loop terminates (worst case) when i > n

Application of Loop Variant:

- existence demonstrates termination
- worst-case number of iterations is f(n,0) = n
- loop body runs in constant time, so worst-case runtime of **LinearSearch** is $\Theta(n)$

Mike Jacobson (University of Calgary)

Computer Science 331

Searching in a Sorted Array Binary Search

Specification of Requirements for Subroutine

Calling Sequence: int bsearch(int low, int high, int key)

Preconditions 1 and 2: add the following to the corresponding precondition in the "Searching in a Sorted Array" problem:

- d) low and high are integers such that
 - 0 < low < n
 - -1 < high < n-1
 - low < high + 1
 - A[h] < key for 0 < h < low
 - A[h] > key for $high < h \le n-1$

The corresponding postcondition can be used without change.

Searching in a Sorted Array

Binary Search

Idea: suppose we compare key to A[i]

- if key > A[i] then key > A[h] for all $h \le i$.
- if key < A[i] then key < A[h] for all h > i.

Thus, comparing key to the middle of the array tells us a lot:

• can eliminate half of the array after the comparison

```
int binarySearch(T key)
  return bsearch(0, n-1, key)
```

Mike Jacobson (University of Calgary)

Computer Science 331

Searching in a Sorted Array Binary Search Pseudocode: The Binary Search Subroutine

int bsearch(int low, int high, T key)

```
if low > high then
  throw KeyNotFoundException
else
  mid = |(low + high)/2|
  if (A[mid] > key) then
    return bsearch(low, mid - 1, key)
  else if (A[mid] < key) then
    return bsearch(mid + 1, high, key)
  else
    return mid
  end if
end if
```

Example

											10
A:	-3	2	6	18	21	23	29	30	35	43	49

Search for 18 in the array A:

- bsearch(0,10,18): mid = (0+10)/2 = 5, A[5] = 23 > 18
- bsearch(0,4,18): mid = (0+4)/2 = 2, A[2] = 6 < 18
- bsearch(3,4,18): mid = (3+4)/2 = 3, A[3] = 18

Return 3

Mike Jacobson (University of Calgary)

Computer Science 331

Mike Jacobson (University of Calgary)

Searching in a Sorted Array

Efficiency and Termination

To search in array of size *n*:

- **1** if *n* is odd: recursively search subarrays of size $\frac{n-1}{2}$
- ② if *n* is even: recursively search subarrays of sizes $\frac{n}{2} 1$ and $\frac{n}{2}$

Summary: largest subarray is of size $\left| \frac{n}{2} \right|$

Partial Correctness

Induction on the length n = high - low + 1 of the subarray $A[low], \ldots, A[high]$

Searching in a Sorted Array

Inductive Hypothesis: Calls to **bsearch** within the code (subarray length < n) behave as expected

Base Case: low > high (n = 0)

• no elements — throw KeyNotFoundException (correct)

Inductive Step: low < high (n > 0)

- return mid if A[mid] = key (correct)
- recursive call (correct by assumption). Should verify that:
 - preconditions of bsearch are satisfied for the recursive call
 - size of subarray in recursive call is < n

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

T(n): number of steps to search in array of size n

$$T(n) \leq egin{cases} c_1 & ext{if } n=0 \ c_2 + T(\lfloor rac{n}{2}
floor) & ext{if } n \geq 1 \end{cases}$$

for some constants $c_2 > c_1 > 0$.

Expand the recurrence relation:

Mike Jacobson (University of Calgary)

$$T(n) \le c_2 + \left(c_2 + T(\lfloor \frac{n}{2^2} \rfloor)\right)$$

= $2c_2 + T(\lfloor \frac{n}{2^2} \rfloor)$
 $\le \cdots$
 $\le kc_2 + T(\lfloor \frac{n}{2^k} \rfloor)$

Efficiency and Termination, Cont.

T(n): number of steps to search in array of size n

- Recursion until $\lfloor \frac{n}{2^k} \rfloor = 0 \implies k = \lfloor \log_2 n \rfloor + 1$
- Therefore, $T(n) \le c_2 |\log_2 n| + c_1$

Can be shown that $T(n) \ge c \log_2 n$

• searching for an element greater (smaller) than the largest (smallest) element in the array

Conclusion: $T(n) \in \Theta(\log_2 n)$

Mike Jacobson (University of Calgary)

Computer Science 331

_ecture #15

Lecture #15 21 / 25

Searching in a Sorted Array

Binary Search

References

Java.utils.Arrays package contains several implementations of binary search

- arrays with Object or generic entries, or entries of any basic type
- slightly different pre and postconditions than presented here

Data Structures: Abstraction and Design Using Java

- by Elliot B. Koffman and Paul A. T. Wolfgang
- Section 5.3

A Note on the Analysis

When analyzing algorithms, sometimes we encounter the operators $\lfloor\rfloor$ and $\lceil\rceil$

- In general, these operators do not change the asymptotic running time of algorithms
- We usually ignore them, e.g., as if *n* was a complete power of 2 (will be more formally justified in CPSC 413)

Binary Search Algorithm:

- $T(n) \leq kc_2 + T(\frac{n}{2^k})$
- Therefore, $k = \log_2 n + 1 \implies T(n) \le c_2(\log_2 n + 1) + c_1$

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #15