Computer Science 331
Algorithms for Searching

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #15

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15

Searching in an Unsorted Array ~ The Searching Problem

The “Searching” Problem

1/23

Outline

0 Searching in an Unsorted Array

@ The Searching Problem
o Linear Search

© Searching in a Sorted Array
@ The Searching Problem
@ Linear Search
@ Binary Search

Mike Jacobson (University of Calgary)

Computer Science 331

Searching in an Unsorted Array ~ The Searching Problem

The “Searching” Problem, continued

Lecture #15 2/23

Precondition 1:

a) Ais an array with length A.length = n > 1 storing values of some
type T

b) key is a value of type T that is stored in A

Postcondition 1:
a) The value returned is an integer i such that A[i] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15

Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some

type T

b) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #15 4/23

Searching in an Unsorted Array Linear Search Searching in an Unsorted Array Linear Search

Linear Search Correctness and Efficiency

Idea: Compare A[0], A[1], A[2],... to key until either
@ key is found, or

@ we run out of entries to check
Correctness: covered in Tutorial 2

int LinearSearch(T key)

0 Efficiency:
| =
.)) @ worst-case number of iterations is n
while (i < n) and (A[i] # key) do
i—i+1 @ loop body runs in constant time
end while @ so worst-case runtime of LinearSearch is in ©(n)
if i < n then
return
else
throw KeyNotFoundException
end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 5/23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 6 /23

Searching in a Sorted Array ~ The Searching Problem Searching in a Sorted Array ~ The Searching Problem

The “Searching” Problem in a Sorted Array The “Searching” Problem in a Sorted Array

Precondition 1: Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some a) Ais an array with length A.length = n > 1 storing values of some
ordered type T ordered type T

b) A[i] < Ali + 1] for every integer i such that 0 </ <n—1 b) A[i] < A[i + 1] for every integer i such that 0 </ <n—1

c) key is a value of type T that is stored in A c) key is a value of type T that is not stored in A

Postcondition 1: Postcondition 2:

a) The value returned is an integer i such that A[i] = key a) A notFoundException is thrown

b) A and key are not changed b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 7 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 8 /23

Searching in a Sorted Array Linear Search

Linear Search

Idea: compare A[0], A[1], A[2],... to k until either key is found or

@ we see a value larger than key — all future values will be larger
than key as welll — or

@ we run out of entries to check

int LinearSearch(T key)

i=0

while (i < n) and (A[/] < key) do
i=i+1

end while

if (i < n) and (A[i/] = key) then
return |

else
throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 9 /23

Searching in a Sorted Array Linear Search

Searching in a Sorted Array Linear Search

Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of
each execution of the loop body:

@ /is an integer such that 0 </ < n
o A[j] < key for0 <j <
@ A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of
the loop body (/)

Base Case:
@ before first execution of loop body we have i =0
@ loop test passes, implying that A[0] < key
@ A and key have not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 10/ 23

Searching in a Sorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least / > 0
times and that the loop invariant is satisfied at the beginning of the ith
execution.
By inspecting the code, we see that at the end of the ith execution:

e 0<i<n

o Alj] < key for 0 <j <i

@ A and key have not been changed

If there is a i 4+ 1st execution of the loop body, then the loop test must
pass after the end of the ith execution (so i < n and A[i] < key), implying
that immediately before the i + 1st execution:

e 0<i<n
o Alj] < key for 0 <j <'i
@ A and key have not been changed

Computer Science 331 Lecture #15 11 /23

Mike Jacobson (University of Calgary)

Partial Correctness (applying the loop invariant)

At the end of the loop (loop condition fails), the following properties are
satisfied:

@ /is an integer such that 0 </ < n
o Alj] < key for 0 < j <i

@ A and key have not been changed

e Either i=nor i< nand A[i] > key

Conclusion: algorithm postconditions are satisfied because
e Case 1 (i = n): loop invariant implies that A[j] < key for 0 <j < n,
so key is not in A and KeyNotFoundException is thrown
@ Case 2 (i < n and A[i] = key): key is found and i is returned
@ Case 3 (i < nand A[i] > key): loop invariant implies that A[j] < key
for 0 <j < i, so key is not in A and KeyNotFoundException is
thrown
Lecture #15 12 /23

Mike Jacobson (University of Calgary) Computer Science 331

Searching in a Sorted Array Linear Search Searching in a Sorted Array Binary Search

Termination and Efficiency Binary Search

Loop Variant: f(n,i)=n—1i

Idea: suppose we compare key to A[i]
o if key > Ali] then key > A[h] for all h < i.
o if key < Ali] then key < A[h] for all h > i.

Proving the Loop Variant:

e f(n,i) is a decreasing integer function because integer i increases by
one after each loop body execution

@ f(n,i) =0 when i = n, loop terminates (worst hen j > . .
(n, i) =0 when i = n, loop terminates (worst case) when i > n Thus, comparing key to the middle of the array tells us a lot:

.. . @ can eliminate half of the array after the comparison
Application of Loop Variant: Yy p

@ existence demonstrates termination . .
int binarySearch(T key)

@ worst-case number of iterations is f(n,0) = n return bsearch(0, n — 1, key)

@ loop body runs in constant time, so worst-case runtime of
LinearSearch is ©(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 13 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 14 /23

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Specification of Requirements for Subroutine Pseudocode: The Binary Search Subroutine

int bsearch(int low, int high, T key)
Calling Sequence: int bsearch(int low, int high, int key)

if low > high then

Preconditions 1 and 2: add the following to the corresponding throw KeyNotFoundException

precondition in the “Searching in a Sorted Array” problem:

else
d) low and high are integers such that mid = | (low + high)/2]
o 0<low=<n if (A[mid] > key) then
o ~1<high<n-1 return bsearch(low, mid — 1, key)
° ﬁ\v[v;]i héghf+ 10 he else if (A[mid] < key) then
° ey for 0 < ow . .
o A[H] > key for high< h< n—1 return bsearch(mid + 1, high, key)
else
_ o _ return mid
The corresponding postcondition can be used without change. end if
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 15 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 16 / 23

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Partial Correctness

Induction on the length n = high — low + 1 of the subarray

012 3 4 5 6 7 8 9 10 Allow], ..., Alhigh]
A:[-3]2[6[18[21][23]29]30]35]43]49| Inductive Hypothesis: Calls to bsearch within the code (subarray length
< n) behave as expected
Search for 18 in the array A : Base Case: low > high (n = 0)
@ bsearch(0,10,18): mid = (0 + 10)/2 =5, A[5] =23 > 18 @ no elements — throw KeyNotFoundException (correct)

e bsearch(0,4,18): mid = (0+4)/2=2, A[2] =6 < 18
e bsearch(3,4,18): mid = (3+4)/2 =3, A[3] =18
Return 3

Inductive Step: low < high (n > 0)
e return mid if Almid] = key (correct)

@ recursive call (correct by assumption). Should verify that:

o preconditions of bsearch are satisfied for the recursive call
e size of subarray in recursive call is < n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 17 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 18 /23

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Efficiency and Termination Efficiency and Termination, Cont.

T(n): number of steps to search in array of size n

T(n) < {q =0
o+ T(l3]) ifn>1

To search in array of size n:
1 for some constants ¢, > ¢; > 0.
2

@ if nis even: recursively search subarrays of sizes 7 — 1 and 7

@ if nis odd: recursively search subarrays of size

Expand the recurrence relation:

Summary: largest subarray is of size | 7|

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 19 /23 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 20 / 23

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

Searching in a Sorted Array Binary Search

A Note on the Analysis

T(n): number of steps to search in array of size n

o Recursion until [5;| =0 = k = [logy n] +1
@ Therefore, T(n) < e |logy n| + 1

Can be shown that T(n) > clog, n
@ searching for an element greater (smaller) than the largest (smallest)
element in the array
Conclusion: T(n) € O(log, n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 21 /23

Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary
search
@ arrays with Object or generic entries, or entries of any basic type

@ slightly different pre and postconditions than presented here

Data Structures: Abstraction and Design Using Java
@ by Elliot B. Koffman and Paul A. T. Wolfgang
@ Section 5.3

Computer Science 331 Lecture #15 23 /23

Mike Jacobson (University of Calgary)

When analyzing algorithms, sometimes we encounter the operators || and

[1

@ In general, these operators do not change the asymptotic running
time of algorithms

e We usually ignore them, e.g., as if n was a complete power of 2 (will
be more formally justified in CPSC 413)

Binary Search Algorithm:
o T(n) < ke + T(5r)
@ Therefore, k =logobn+1 = T(n) < c(logon+1)+c

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 22 /23

	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search

