
Computer Science 331
Stacks1

As part of the SAGES Teaching Scholar Program

Parthasarathi Das

Department of Computer Science
University of Calgary

Lecture #13

1Adapted from Dr. Michael Jacobson’s lecture slides.
Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 1 / 22

Outline

1 Learning Outcomes

2 Definition

3 Applications
Parenthesis Matching

4 Implementation
Array-Based Implementation
Linked List-Based Implementation

5 Additional Information

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 2 / 22

Learning Outcomes

Learning Outcomes

By the end of today’s session, you will be able to -

understand what stacks are, their various types and some applications
of stacks.

implement stacks using arrays and linked lists

apply this ADT suitably to solve problems

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 3 / 22

Definition

Definition of a Stack ADT

A stack is a collection of objects that can be accessed in “last-in,
first-out”(LIFO) order: The only visible element is the (remaining) one
that was most recently added.

It is easy to implement such a simple data structure extremely efficiently
— and it can be used to solve several interesting problems.

Indeed, a stack is used to execute recursive programs — making this one
of the more widely used data structures (even though you generally don’t
notice it!)

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 4 / 22



Definition

Stack ADT

Stack Interface:

public interface Stack<T> {

public push(T x);

public T peek();

public T pop();

public boolean isEmpty();

}

Stack Invariant:

The object that is visible at the top of the stack is the object that has
most recently been pushed onto it (and not yet removed).

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 5 / 22

Definition

A Stack Interface: Methods

1 void push(T obj):
Precondition:

a) Interface invariant.

Postcondition:

a) The input object has been pushed onto the stack (which is otherwise
unchanged).

2 T peek() (called top in the textbook):
Precondition:

a) Interface Invariant.
b) The stack is not empty.

Postcondition:

a) Value returned is the object on the top of the stack.
b) The stack has not been changed.

Exception: An EmptyStackException is thrown if the stack is
empty when this method is called.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 6 / 22

Definition

A Stack Interface: Methods

3 T pop():
Precondition:

a) Interface Invariant.
b) The stack is not empty.

Postcondition:

a) Value returned is the object on the top of the stack
b) This top element has been removed from the stack

Exception: An EmptyStackException is thrown if the stack is
empty when this method is called

4 boolean isEmpty():
Precondition:

a) Interface Invariant.

Postcondition:

a) The stack has not been changed.
b) Value returned is true if the stack is empty and false otherwise.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 7 / 22

Definition

Example

Initial stack

5 ← top
10

S: 15

3) S.push(3)

3 ← top
10

S: 15

Output: no output

1) S.peek()

5 ← top
10

S: 15

Output: 5

4) S.push(4)

4 ← top
3

10
S: 15

Output: no output

2) S.pop()

10 ← top
S: 15

Output: 5

5) S.peek()

4 ← top
3

10
S: 15

Output: 4

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 8 / 22



Applications Parenthesis Matching

Problem: Parenthesis Matching

Consider an expression, given as a string of text, that might include
various kinds of brackets.

How can we confirm that the brackets in the expression are properly
matched? Eg. [(3× 4) + (2− (3 + 6))]

Solution : Using a stack (provable by induction on the length of the
expression):

Begin with an empty bounded stack (whose capacity is greater than
or equal to the length of the given expression)

Sweep over the expression, moving from left to right

Push a left bracket onto the stack whenever one is found

Try to pop a left bracket off the stack every time a right bracket is
seen, checking that these two brackets have the same type

Ignore non-bracket symbols

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 9 / 22

Applications Parenthesis Matching

Solution Using a Stack (continued)

Then parentheses are matched if and only if:

Stack is never empty when we want to pop a left bracket off it,and

Compared left and right brackets always do have the same type, and

The stack is empty after the last symbol in the expression has been
processed.

Exercise: Trace execution of this algorithm on the preceding example.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 10 / 22

Implementation

Two possibilities

Dynamic array implementation:

Stack’s contents stored in cells 0, . . . , top − 1; top element in top − 1.

Can use a static array if size of stack is bounded.

Linked implementation:

Identify top of stack with the head of a singly-linked list

Works well because stack operations only require access to the top of
the stack, and linked list operations with the head are especially
efficient.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 11 / 22

Implementation Array-Based Implementation

Implementation Using an Array

Initial Stack

5 ← top
10

S: 15

0 1 2 3 4 5
S: 15 10 5 ? ? ?

top = 2

Effect of S.pop()

10 ← top
S: 15

0 1 2 3 4 5
S: 15 10

top = 1

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 12 / 22



Implementation Array-Based Implementation

Implementation Using an Array

Effect of S.push(3)

3 ← top
10

S: 15

0 1 2 3 4 5
S: 15 10 3

top = 2

Effect of S.push(4)

4 ← top
3

10
S: 15

0 1 2 3 4 5
S: 15 10 3 4

top = 3

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 13 / 22

Implementation Array-Based Implementation

Implementation of Stack Operations

public class ArrayStack<T> implements Stack<T> {

private T[] stack;

private int top;

public ArrayStack(){

top = -1;

stack = (T[]) new Object[6]; }

public boolean isEmpty(){

return (top == -1); }

public int size(){

return top+1; }

public void push(T x){

++top;

stack[top] = x; }

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 14 / 22

Implementation Array-Based Implementation

Implementation of Stack Operations

public T peek() {

if (isEmpty())

throw new EmptyStackException();

return stack[top];}

public T pop() {

if (isEmpty())

throw new EmptyStackException();

T e = stack[top];

stack[top] = null;

--top;

return e; }

}

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 15 / 22

Implementation Array-Based Implementation

Cost of Operations

All operations cost Θ(1) (constant time, independent of stack size).
Problem: What should we do if the stack size exceeds the array size?

Modify push() to reallocate a larger stack (or use a dynamic array)

public void push(T x) {

++top;

if (top == stack.length) {

T [] stackNew = (T[]) new Object[2*stack.length];

System.arraycopy(stackNew,0,stack,0,stack.length);

stack = stackNew;

}

stack[top] = x;

}

Revised cost: Θ(n) in the worst case, Θ(1) amortized cost

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 16 / 22



Implementation Linked List-Based Implementation

Implementation Using a Linked List

Initial Stack

5 ← top
10

S: 15

top

5 10 15

Effect of S.pop()

10 ← top
S: 15

top

10 15

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 17 / 22

Implementation Linked List-Based Implementation

Implementation Using a Linked List

Effect of S.push(3)

3 ← top
10

S: 15

top

10 153

Effect of S.push(4)

4 ← top
3

10
S: 15

top

151034

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 18 / 22

Implementation Linked List-Based Implementation

Implementation of Stack Operations

public class LinkedListStack<T> implements Stack<T> {

private class StackNode<T> {

private T value;

private StackNode<T> next;

private StackNode(T x, StackNode<T> n)

{ value = x; next = n; }

}

private StackNode<T> top;

private int size;

public LinkedListStack()

{ size = 0; top = (StackNode<T>) null; }

public boolean isEmpty() { return (size == 0); }

public int size() { return size; }

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 19 / 22

Implementation Linked List-Based Implementation

Implementation of Stack Operations (cont.)

public void push(T x) {

++size; top = new StackNode<T>(x,top);

}

public T peek() {

if (isEmpty()) throw new EmptyStackException();

return top.value;

}

public T pop() {

if (isEmpty()) throw new EmptyStackException();

T x = top.value; top = top.next; --size; return x;

}

Cost of stack operations: Θ(1) (independent of stack size)

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 20 / 22



Additional Information

Variation: Bounded Stacks

Size-Bounded Stacks — Similar to stacks (as defined above) with the
following exception:

Stacks are created to have a maximum capacity (possibly
user-defined — so that two constructors are needed)

If the capacity would be exceeded when a new element is added to
the top of the stack then push throws a
StackOverflowException and leaves the stack unchanged

A static array whose length is the stack’s capacity can be used to
implement a size-bounded stack, extremely simply and efficiently

Most “hardware” and physical stacks are bounded stacks.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 21 / 22

Additional Information

Stacks in Java and the Textbook

Implementation in Java 8:

Java 8 includes a Stack class as an extension of the Vector class (a
dynamic array).
Unfortunately, this implementation is somewhat problematic (Stack
inheirit’s Vector’s methods, too!)

Introduction to Algorithms

by Cormen, Lieserson, Rivest, and Stein

Section 10.1

Data Structures: Abstraction and Design Using Java

by Elliot B. Koffman and Paul A. T. Wolfgang

Chapter 3

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #13 22 / 22


	Learning Outcomes
	Definition
	Applications
	Parenthesis Matching

	Implementation
	Array-Based Implementation
	Linked List-Based Implementation

	Additional Information

