Computer Science 331 Introduction to CPSC 331

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #1

Mike Jacobson (University of Calgary)

Computer Science 331

Outline

- Course Information
- 2 Learning Goals
 - Overview
 - Abstract Data Types
 - Algorithm Analysis and Testing
- 3 Expected Background
- 4 How to Succeed
- 6 References
- 6 What to do Next

Mike Jacobson (University of Calgary)

Computer Science 331

Course Information

Course Information

Instructor: Mike Jacobson

Phone: 210-9410, ICT 612

• email: jacobs@cpsc.ucalgary.ca

• URL: http://pages.cpsc.ucalgary.ca/~jacobs/

Contact Times:

• Office hours: M 14:00-16:00 or by appointment only

Lectures: MWF 10:00-10:50 in ICT 121

• Tutorial #1: M/W 16:00-16:50 in MS 176

• Tutorial #2: M/W 13:00–13:50 in MS 176

• Tutorial #3: M/W 11:00-11:50 in MS 156

• Tutorial #4: TuTh 9:00 - 9:50 in MS 160

First labs: next Monday

Course Information

Assessment

Components:

- 30% four assignments (written and programming questions)
- 30% midterm (Wednesday, March 8, 17-18:30, EDC 179)
- 40% final exam

Take note of term test dates/times: let me know of conflicts as soon as possible (no make up tests)

Submission procedures and guidelines:

information available on course web site

NOTE: a grade of C- or better is required to use this course as a prerequisite for any course offered by Computer Science

Computer Science 331 Mike Jacobson (University of Calgary) Lecture #1 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #1

Abstract Data Types

This course is centred around abstract data types and the data structures and algorithms used to implement them.

You will learn to:

- describe classical ADTs (stacks, queues, dictionaries, graphs) and their operations
- identify data structures that can be used to implement ADTs (arrays, linked lists, binary search trees, hash tables, ...)
- compare resource requirements for different data structures and algorithms
- describe operations using English, pseudocode, or Java implementation
- apply ADTs to solve problems, using your own code or existing packages

Mike Jacobson (University of Calgary)

Mike Jacobson (University of Calgary)

Learning Goals

Abstract Data Types

Algorithms

An Algorithm:

- is a finite sequence of steps that solves some well-defined problem
- is often given either by several paragraphs in carefully written English or using pseudocode. Such a description is (largely) "implementation independent"
- can be implemented as (part of) a program using some programming language

Note: This course will focus at least as much on algorithms as on the computer programs generated from them.

⇒ CPSC 331 is not a programming course.

Learning Goals Overview

Algorithm Analysis and Testing

In order to meet these goals, you will also be introduced to certain tools from algorithm analysis.

You will learn to:

- develop mathematical expressions for time and storage requirements for simple algorithms
- use asymptotic notation to simplify expressions for resource requirements of algorithms
- understand and correctly identify asymptotic relations between functions that are commonly used to bound resource requirements
- explain clearly and precisely why algorithms, discussed in this course, are correct and efficient.
- develop and implement tests to provide evidence that software correctly implements an algorithm

Learning Goals Abstract Data Types

More About Problems and Algorithms

Many computer science applications rely on solutions to a small number of fundamental problems

Resource requirements and limitations may also be important — and may differ from application to application

Consequence: It is often useful to know about several algorithms for the same problem — because there will be situations in which each is a better choice than the others

In this course we will learn about algorithms for several fundamental problems, including searching and sorting

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #1

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #1

Abstract Data Types

Data Types and Abstract Data Types

A data type is defined by

- Data values and their representation
- Operations defined on the data values and the implementation of these operations as executable statements (i.e., methods)

An abstract data type is, essentially:

- a specification of requirements for a data type
- it does not include (or require) a specific implementation but it may include conditions that data values must satisfy

Mike Jacobson (University of Calgary)

Computer Science 331

Mike Jacobson (University of Calgary)

Abstract Data Types

Java Implementation

Assignments will require Java programming. You will

- implement algorithms and data structures on your own
- use implementations in a standard Java library (the "Java Collections Framework") to solve problems

Java will not be taught (much) during the lectures. However, sources of help with Java include

- lots of material on the course web site, textbook
- tutorials, which will include more material about Java programming (some of the time)

Data Structures

A data structure provides a representation of the data values specified by an ADT

Abstract Data Types

• Together with algorithms for an ADT's operations, this provides an implementation-dependent description of a data type

We will study several fundamental ADTs, along with data structures and algorithms for their operations, in this course

Learning Goals

Algorithm Analysis and Testing

Algorithm Analysis and Testing

Correctness and efficiency of algorithms are both important!

In this course you will

- see numerous proofs of correctness of algorithms, and you will become familiar with the structure of a proof of correctness as a result
- design and implement tests in order to look for errors and use the results of tests to debug your programs
- learn ways to measure (and *compare*)
 - the time an algorithm requires in the "worst case"
 - the amount of storage space

In this course we will generally prove the correctness and efficiency of algorithms but we will test, debug and profile programs.

Expected Background

Expected Background: Programming

Expected Background: Other Areas

Expected Background

An Object-Oriented Programming Language:

- Java should have been introduced in a prerequisite course
- see Java resources on the course web site or the textbook
- work through Tutorial Exercise #1 as soon as you can! It will be discussed in the first tutorial next week.

Recursion:

- you should understand how recursive programs can be used to solve problems
- recursive definitions of various structures and properties will be used in this course as well

Discrete Mathematics and Logic:

- have numerous applications in CPSC 331 (especially proofs and analysis)
- ⇒ MATH 271 is a prerequisite of this course!

Technical Reading and Writing:

- this course will include reading assignments
- your writing will be assessed in this course

Mike Jacobson (University of Calgary)

Computer Science 331

Mike Jacobson (University of Calgary)

Computer Science 331

How to Succeed

How to Succeed

In this course you will learn by doing!

- Prepare for and attend **lectures**
 - obtain/read notes and other reading material ahead of time
- Prepare for and attend tutorials
 - read and work through exercises ahead of time
 - the more you do on your own the better
- Work through the self-study exercises
 - will help you learn required aspects of Java for this course
- Take **assignments** seriously
 - start early (not last minute!)
 - make sure that you understand what you are and what you are not — allowed to do when working on these

Make use of my **office hours** if you need more help

Recommended Reference

Textbook:

• Thomas H. Cormen, et.al., Introduction to Algorithms, 3rd Edition, MIT Press, 2009, eBook via the library (2nd edition)

Recommended Java Reference:

• Kathy Sierra and Bert Bates, Head First Java, O'Reilly, Second Edition, 2005, eBook via the library

Recommended Reference for Correctness:

• Michael Soltys, An Introduction to the Analysis of Algorithms, World Scientific, 2009.

Helpful material on proofs of correctness in Chapter 1 (can download for free from book's website).

References

Other Resources

Course web site: lots of information here!

- Available from the instructor's home page
- D2L will be used for assignment submission and access to grades

Lectures: students are expected to attend all classes

- Partial notes will be made available online ahead of time
- Additional material on course web site

Tutorials: participation in these is expected too!

 Self-exercises and tutorial exercises will be posted on the web site ahead of time What to do Next

What to do Next

- 1 Make sure you are eligible to be *in* this course!
- 2 Buy the textbook (will be useful as a reference for a long time!)
- Request your computer science account if you don't already have one
- Work through Self-Study Exercise #1! It will be assumed that you have *completed* this before the first tutorial next Monday
- Then read through Tutorial Exercise #1 and try to answer the questions on it!
- Check out the course web site! It includes lots of information, including about how to accomplish the above

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #1

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #1