
Computer Science 331
Binary Tree Traversals

Mike Jacobson

Department of Computer Science
University of Calgary

Supplemental Material

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 1 / 13

Outline

1 Iterators
Java Interfaces

2 Tree Traversals
Types of Traversals

3 Binary Search Tree Iterators
Inorder Traversal Iterator
Other Traversal Iterators

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 2 / 13

Iterators Java Interfaces

The Java Iterator Interface

An iterator is a program component that enables you to step through
(traverse) a collection of data sequentially

each item is considered exactly once

typically does not permit the data to be modified

Java’s Iterator<T> interface defines the following functions:

boolean hasNext() — true if there is another entry to return

T next() — returns the next entry (type T) in the iteration and
advances the iterator by one position

void remove() — (optional) removes last item returned

next throws a NoSuchElementException if there are no items left to
return (enter collection has been traversed)

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 3 / 13

Iterators Java Interfaces

The Iterable Interface

Java’s Iterable interface specifies one function:

Iterator<T> iterator() — returns an iterator object for the data
structure implementing this interface

Idea: data structures that implement Iterable provide an easy
mechanism to traverse all currently-stored objects

Why this is useful:

not all data structures are easily traversed (eg. with a for-loop)

different types (orders) of traversals may be possible

provides an identical interface for traversing any data structure that
implements Iterable

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 4 / 13



Iterators Java Interfaces

Example: Using a BST Iterator

public class BST<E,V> implements Iterable<V> {
public Iterator<E> iterator()
{ return new BSTIterator<E,V>(); }

private class BSTIterator<E,V> implements Iterator<E>
{ }

}

BST<E,V> myTree;
Iterator<E> myIterator = myTree.iterator();
while (myIterator.hasNext()) {

E nextKey = (E) myIterator.next();
// do something with nextKey

}

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 5 / 13

Tree Traversals Types of Traversals

Types of Traversals

Two main strategies, total of four variations

each visits tree nodes in a different order

Depth-first:

includes preorder, inorder, and postorder traversals

visit a tree’s components (root, left subtree, right subtree) in some
specific order

Breadth-first:

includes level-order traversal

visit all nodes on the same level before going deeper in the tree

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 6 / 13

Tree Traversals Types of Traversals

Depth-first Traversals

Preorder (parents before children):

order of visitation: root, left subtree (recursively), right subtree
(recursively)

Inorder:

order of visitation: left subtree (recursively), root, right subtree
(recursively)

Postorder (children before parents):

order of visitation: left subtree (recursively), right subtree
(recursively), root

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 7 / 13

Tree Traversals Types of Traversals

Example

1

3

5

6

10

7

Results of traversals:

Preorder: 6,3,1,5,10,7

Inorder: 1,3,5,6,7,10 (sorted if T is a BST)

Postorder: 1,5,3,7,10,6

Level order: 6,3,10,1,5,7

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 8 / 13



Tree Traversals Types of Traversals

Recursive Inorder Traversal

public void printInorder() {
printInorder(root);

}

private void printInorder(BSTnode<E,V> T) {
if (isEmpty()) return;

printInorder(T.left);
System.print(T.value);
printInorder(T.right);

}

Preorder and postorder traversals are analogous

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 9 / 13

Binary Search Tree Iterators Inorder Traversal Iterator

A Binary Search Tree Inorder Iterator

Problem: iterator must maintain state, whereas the recursive function
traverses the entire tree in one call

Solution: simulate recursion using a stack

pop the stack when you have to go back up the tree

Eg. inorder traversal:

start at root, move to left-most node and push each node traversed
on the stack

pop the stack and return this value

begin next iteration with the right child of the returned node

terminates when the stack is empty and the current node is null

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 10 / 13

Binary Search Tree Iterators Inorder Traversal Iterator

Inorder Traversal Example

1

3

5

6

10

7

next

S:

Traversal: 1,3,5,6,7,10

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 11 / 13

Binary Search Tree Iterators Other Traversal Iterators

Iterative Versions of Other Traversals

Preorder traversal:

process current node (initially root) and push on the stack

set current node to left child (if non-empty)

otherwise, pop the stack and set current node to right child until
current is non-null or stack is empty and current is null

terminates when current node is null and the stack is empty

Level-order traversal (similar, but use a queue)

enqueue the root of the tree to start

dequeue node at the head of the queue and process it

enqueue the left and right children, repeat

terminates when the queue is empty

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 12 / 13



Binary Search Tree Iterators Other Traversal Iterators

Level-order Traversal Example

1

3

5

6

10

7

Q:

Traversal: 6, 3, 10, 1, 5, 7

Mike Jacobson (University of Calgary) Computer Science 331 Supplemental Material 13 / 13


	Iterators
	Java Interfaces

	Tree Traversals
	Types of Traversals

	Binary Search Tree Iterators
	Inorder Traversal Iterator
	Other Traversal Iterators


