
Computer Science 331
Graph Search: Breadth-First Search

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #32

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 1 / 20

Outline

1 Introduction

2 Algorithm

3 Example

4 Analysis

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 2 / 20

Introduction

Breadth-First Search

Another way to search a connected component of a graph

Given a graph G = (V ,E) and source vertex s, the algorithm finds a
breadth-first tree with root s, that is, a subgraph Ĝ = (V̂ , Ê) such that

Ĝ is a tree

for every vertex v ∈ V , v ∈ V̂ if and only if c is reachable from s
(that is, there is a path from s to v in G — so Ĝ is a spanning tree
for a connected component of G)

for each vertex v ∈ G , the simple path from v up to s in Ĝ (in which
each edge is an edge from a node to its parent in the tree) is a
shortest path from v to s in G .

The version of the algorithm presented here also returns the distance
from v to s in G (that is, the length of a shortest path from v to s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 3 / 20

Introduction

Idea

Begin with s; expand the boundary between “discovered” and
“undiscovered” vertices uniformly across the breadth of the boundary

As in DFS, Vertices are coloured during the search

All vertices are initially white, s is almost immediately coloured grey.

All white vertices are “undiscovered.”

“Discovered” vertices are either grey or black. Vertices on the
boundary between discovered and undiscovered vertices are grey.
Other discovered vertices are black.

Unlike DFS, when a grey vertex t is processed, all white neighbours are
recoloured grey; t is then coloured black.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 4 / 20

Introduction

Typical Search Pattern

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 5 / 20

Algorithm

Specification of Requirements

Precondition: G = (V ,E) is a graph and s ∈ V

Postcondition:

One value returned is a function π : V → V ∪ {NIL} defining (with s)
a predecessor subgraph, that is a spanning tree for the connected
component of G containing s

For each vertex v in the above spanning tree, the simple path from v
to s in this tree is a shortest path from v to s in the graph G

Another value returned is a function d : V → N ∪ {+∞}; for each
vertex v ∈ V , d [v] is the distance from v to s (so that d [v] = +∞ if
and only if there is no path from v to s in G).

The graph G has not been changed.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 6 / 20

Algorithm

Data and Data Structures

The following information is maintained for each u ∈ V :

colour [u]: Colour of u

d [u]: Distance of u from s

π[u]: Parent of u in tree being constructed

In order to ensure that the search is performed in a “breadth-first” way, a
queue is used to store grey nodes

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 7 / 20

Algorithm

Pseudocode

BFS(G , s)

{Initialization}
for each vertex u ∈ V do

colour [u] = white {mark all vertices as undiscovered}
d [u] = +∞
π[u] = NIL

end for
colour [s] = grey {start with source vertex s}
d [s] = 0 {path from s to itself has distance 0}
π[s] = NIL {s is the root of the BFS tree (no parent)}
Initialize queue Q to be empty
Q.add(s) {add first grey node s to the queue}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 8 / 20

Algorithm

Pseudocode, Continued

while (Q is not empty) do
u = Q.remove()
for each v ∈ Adj [u] do
{examine neighbours of u}
if colour [v] == white then

colour [v] = grey {discover each undiscovered neighbour}
d [v] = d [u] + 1 {shortest path: s to u followed by (u, v)}
π[v] = u {u is the predecessor on the shortest path}
Q.add(v) {examine neighbours of v}

end if
end for
colour [u] = black {all neighbours of u have been discovered}

end while
return π, d

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 9 / 20

Example

Example

a b c

d e f

g h i

Q

a b c d e f g h i
d 0 1 2 1 2 3 2 3 4

π NIL a b a b c d e f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 10 / 20

Analysis

Useful Properties Concerning Colours

Each of the following properties hold immediately before each execution of
the outer while loop and before each execution of the inner for loop.

All nodes that have never been added to the queue are white.

All nodes that are currently on the queue are grey.

All nodes that have been on the queue but later removed from it are
black.

All nodes that have been included in the predecessor subgraph (for π)
are either grey or black. All other nodes are white.

It is also clear — by inspection of the code —that the colour of a node is
never changed again once it becomes black.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 11 / 20

Analysis

Useful Property of Distances

The shortest-path distance δ(s, v) from s to v is the minimum number of
edges on a path from s to v .

Lemma 1

Let G = (V ,E) be an undirected graph, and let s ∈ V be an arbitrary
vertex. Then, for every edge (u, v) ∈ E , δ(s, v) ≤ δ(s, u) + 1.

Proof.

If u is reachable from s :

one path from s to v : shortest path to u followed by edge (u, v)

shortest path to v is at most as long as this path (δ(s, u) + 1)

Otherwise, δ(s, u) =∞ and the inequality holds.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 12 / 20

Analysis

Lemma: Distance Inequality

Lemma 2

Let G = (V ,E) be an undirected graph, suppose BFS is run on G from a
given source vertex s ∈ V , and suppose that this algorithm terminates.
Then (on termination of the algorithm), for each vertex v ∈ V if d [v] is a
nonnegative integer then the sequence of edges

(v , π[v]), (π[v], π[π[v]]), . . .

starting from v, and following edges from each vertex to its parent, forms
a path of length d [v] from v to s in G .

Method of Proof.

Prove that this property is satisfied at the both the beginning and end of
each execution of the body of the while loop, using induction on the
number of executions.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 13 / 20

Analysis

Lemma: Enqueued Vertices

Lemma 3

Suppose that, at the beginning of an execution of the body of the while
loop, the queue Q contains vertices 〈v1, v2, . . . , vr 〉, where v1 is the head
of Q and vr is the tail of Q. Then d [vr] ≤ d [v1] + 1 and d [vi] ≤ d [vi+1]
for 1 ≤ i ≤ r − 1.

Method of Proof.

Use induction on the number of nodes that have already been removed
from the queue at this point.

Note: One can show (indeed, one likely does show as part of the above
proof) that this property is satisfied at the end of each execution of the
body of the loop when the queue is nonempty, as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 14 / 20

Analysis

Lemma: Distance and Queue Order

Lemma 4

Suppose that vertices vi and vj are added to the queue during the
execution of BFS, and that vi is added before vj . Then d [vi] ≤ d [vj] at
the time vi is added to the queue.

Method of Proof.

Use induction on the number of vertices that were added to the queue
between vi and vj . Follows from Lemma 3, and the fact that each vertex
only receives a finite d value once.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 15 / 20

Analysis

Lemma: Correctness of Distance

Lemma 5

If a vertex v is added to the queue at any point during the execution of the
BFS algorithm, then v is reachable from s. Furthermore, the value d [v]
that is set immediately before v is added to the queue is equal to δ(s, v).

See lecture supplement for complete proof.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 16 / 20

Analysis

Lemma: Completeness of Predecessor Subgraph

Lemma 6

Suppose the BFS algorithm is run with an undirected graph G = (V ,E)
and vertex s ∈ V as input. If the algorithm terminates then, on
termination, the predecessor subgraph for the function π and vertex s is a
spanning tree for the connected component of G that includes s.

Method of Proof.

Lemma 2 implies that every vertex in the predecessor subgraph (defined
by s and π) is reachable from s.

The fact that “if v is reachable from s then v is included in the
predecessor subgraph” — so that the predecessor subgraph is a spanning
tree for the (entire) connected component containing s — can be proved
by induction on the distance from v to s.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 17 / 20

Analysis

Partial Correctness of Breadth-First Search

Theorem 7

Let G = (V ,E) be a directed or undirected graph, and suppose BFS is run
on G from a given source vertex s ∈ V . Then each of the following
properties is satisfied on termination of the algorithm (if it terminates):

The predecessor subgraph Gp = (Vp,Ep) for the function π and
vertex s is a spanning tree for the connected component of G that
contains s.

For all v ∈ V , d [v] is the length of a shortest path from v to s in G ,
and d [v] = +∞ if and only if v is not reachable from s.

For every v ∈ V that is reachable from s, the path from s to v in Gp

is also a shortest path from s to v in G .

Proof.

Consequence of the previous lemmas.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 18 / 20

Analysis

Termination and Efficiency

Theorem 8

Let G = (V ,E) be a directed or undirected graph, and suppose BFS is run
on G from a given source vertex s ∈ V . Then the algorithm terminates
after performing Θ(|V |+ |E |) operations.

Proof.

Exercise (can be completed by modifying the analysis of the DFS
algorithm).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 19 / 20

References

References

Further Reading and Java Code:

Introduction to Algorithms, Chapter 22

Data Structures & Algorithms in Java, Chapter 13

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 20 / 20

	Introduction
	Algorithm
	Example
	Analysis
	References

