
Computer Science 331
Heap Sort

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #25-27

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 1 / 74

Outline

1 Definition

2 Representation

3 Operations on Binary Heaps
Insertion
Deletion

4 Applications of Binary Heaps
HeapSort
Priority Queues

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 2 / 74

Definition

Binary Heaps

Definition: A binary heap is

a binary tree whose nodes store elements of a multiset (possibly
including multiple copies of the same value)

every heap of size n has the same shape

values at nodes are arranged in heap order

Applications:

Used to implement another efficient sorting algorithm (Heap Sort)

One of the data structures commonly used to implement another
useful abstract data type (Priority Queue)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 3 / 74

Definition

Heap Shape

A heap is a complete binary tree:

As the size of a heap increases, nodes are added on each level, from
left to right, as long as room at that level is available.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 4 / 74



Definition

Heap Shape: Examples

Shapes of Heaps with Sizes 1–7:

Size 1

Size 5

Size 2

Size 6

Size 3

Size 7

Size 4

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 5 / 74

Definition

Height

The height of a node, and of a heap, are defined as follows.

Height of a Node in a Heap: Number of edges on the longest path
from the node down to a leaf

Height of a Heap: Height of the root of the heap

Note: same as the node’s height as a binary tree

Theorem 1

If a heap has size n then its height h ∈ Θ(log n).

Proof: use the fact that a heap is a complete tree — every level contains
as many nodes as possible.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 6 / 74

Definition

Proof of Height Bound

Proof.

Lower bound:

n ≤ 2h+1 − 1 (equal if tree is full)

thus h ≥ log2(n + 1)− 1 > log2 n − 1 if n ≥ 1 and h ∈ Ω(log n)

Upper bound:

2i keys at depth i = 0, . . . , h − 1

at least 1 key at depth h

n ≥ 1 + 2 + 4 + · · ·+ 2h−1 + 1

thus, n ≥ 2h − 1 + 1, i.e., h ≤ log2 n and h ∈ O(log n)

Conclusion: Therefore h ∈ Θ(log n) (can show that h = blog2 nc)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 7 / 74

Definition

Max-Heaps

Max-Heaps satisfy the Max-Heap Property: The value at each node is
greater than or equal to values at any children of the node.

15

9 2

7 6 1

Application: The Heap Sort algorithm

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 8 / 74



Definition

Min-Heaps

Min-Heaps satisfy the Min-Heap Property: The value at each node is less
than or equal to the values at any children of the node.

1

2 6

7 15 9

Application: Used for Priority Queues

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 9 / 74

Representation

Representation Using an Array

A heap with size n can be represented using an array with size m ≥ n

15

9 2

7 6 1

0 1 2 3 4 5

15 9 2 7 6 1

Index of Root: 0

For i ≥ 0

parent(i) = b(i − 1)/2c
left(i) = 2i + 1

right(i) = 2i + 2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 10 / 74

Representation

Representation Using an Array

Suppose A is an array used to represent a binary heap.

Notation:

A[i ]: value stored at the node whose index is i

heap-size(A): size of the heap represented using A

Properties:

heap-size(A) ≤ A.length

The entries
A[0], A[1], . . . , A[heap-size(A)− 1]

are used to store the entries in the heap.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 11 / 74

Operations on Binary Heaps

Overview

Operations on Binary Heaps:

Insertion into a Max-Heap

Deletion of the Largest Element from a Max-Heap

Like red-black tree operations each has two stages:

a) A simple change determines the output and the set of values stored,
but destroys the Max-Heap property

b) A sequence of local adjustments restores the Max-Heap property.

The corresponding Min-Heap operations replace the comparisons used and
are otherwise the same.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 12 / 74



Operations on Binary Heaps Insertion

Insertion: Specification of Problem

Signature: void insert(T[] A, T key)

Precondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) key is a value of type T

c) heap-size(A) < A.length

Postcondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) The given key has been added to the multiset of values stored in this
Max-Heap, which has otherwise been unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 13 / 74

Operations on Binary Heaps Insertion

Insertion: Specification of Problem

Precondition 2:

a) A is an array representing a Max-Heap that contains values of type T

b) key is a value of type T

c) heap-size(A) = A.length

Postcondition 2:

a) A FullHeapException is thrown

b) A (and the Max-Heap it represents) has not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 14 / 74

Operations on Binary Heaps Insertion

Step 1: Adding the Element

Pseudocode:

void insert(T[] A, T key)

if heap-size(A) < A.length then
A[heap-size(A)] = key
heap-size(A) = heap-size(A) + 1
The rest of this operation will be described in Step 2

else
throw new FullHeapException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 15 / 74

Operations on Binary Heaps Insertion

Example: Insertion, Step 1

Suppose that A is as follows.

16

12 14

2 4

0 1 2 3 4 5 6 7

16 12 14 2 4 1 9 3

A.length = 8, heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 16 / 74



Operations on Binary Heaps Insertion

Example: Insertion, Step 1

Step 1 of the insertion of the key 20 produces the following:

16

2

12 14

4 20

0 1 2 3 4 5 6 7

16 12 14 2 4 20 9 3

A.length = 8, heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 17 / 74

Operations on Binary Heaps Insertion

Step 2: Restoring the Max-Heap Property

Situation After Step 1:

The given key has been added to the Max-Heap and stored in some
position j in A

If this value is at the root (because the heap was empty, before this)
or is less than or equal to the value at its parent, then we have a
produced a Max-Heap

Otherwise we will move the value closer to the root until the
Max-Heap property is restored

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 18 / 74

Operations on Binary Heaps Insertion

Step 2: Restoring the Max-Heap Property

Pseudocode for Step 2:

j = heap-size(A)− 1
while j > 0 and A[j] > A[parent(j)] do
tmp = A[j]
A[j] = A[parent(j)]
A[parent(j)] = tmp
j = parent(j)

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 19 / 74

Operations on Binary Heaps Insertion

Example: Execution of Step 2

Consider the following heap, which was produced using our ongoing
example at the end of Step 1:

16

2

12 14

4 20

0 1 2 3 4 5 6 7

16 12 14 2 4 20 9 3

A.length = 8, heap-size(A) = 6

Initial value of j: 5

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 20 / 74



Operations on Binary Heaps Insertion

Example: Execution of Step 2

A and j are as follows after the first execution of the body of the loop in
Step 2:

16

2

12

4

20

14

0 1 2 3 4 5 6 7

16 12 20 2 4 14 9 3

A.length = 8, heap-size(A) = 6

Current value of j: 2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 21 / 74

Operations on Binary Heaps Insertion

Example: Execution of Step 2

A and j are as follows after the second execution of the body of this loop:

2

12

4 14

20

16

0 1 2 3 4 5 6 7

20 12 16 2 4 14 9 3

A.length = 8, heap-size(A) = 6

Current value of j: 0

The loop terminates at this point.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 22 / 74

Operations on Binary Heaps Insertion

Step 2: Partial Correctness

The following properties are satisfied at the beginning of each execution of
the body of the loop:

a) The first heap-size(A) entries of A are the multiset obtained from
the original contents of the heap by inserting a copy of the given key

b) j is an integer such that 0 ≤ j < heap-size(A)

c) For every integer h such that 1 ≤ h < heap-size(A), if h 6= j then
A[h] ≤ A[parent(h)]

d) If j > 0 and left(j) < heap-size(A) then
A[left(j)] ≤ A[parent(j)]

e) If j > 0 and right(j) < heap-size(A) then
A[right(j)] ≤ A[parent(j)]

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 23 / 74

Operations on Binary Heaps Insertion

Step 2: Partial Correctness

If the loop invariant holds and the loop guard is true, then

0 < j < heap-size(A) and A[j] > A[parent(j)]

Both children of A[j] (if they exist) are ≤ A[parent(j)].

After the loop body executes:

jnew = parent(jold), A[jold ] and A[parent(jold)] are swapped.

A[jold ] is ≥ both of its children

Properties (a), (c), (d) and (e) of the loop invariant are satisfied.

If the loop invariant holds but the loop guard fails:

j = 0, or 0 < j < heap-size(A) and A[j] ≤ A[parent(j)]

Properties (a), (c), (d) and (e) of the loop invariant are satisfied.

Exercises:

1 Sketch proofs of the above claims.

2 Use these to prove the partial correctness of this algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 24 / 74



Operations on Binary Heaps Insertion

Step 2: Termination and Efficiency

Loop Variant: f (A,j) = blog2(j + 1)c

Justification:

integer value function

decreases by 1 after each iteration, because j is replaced with
(j − 1)/2

f (A, j) = 0 implies that j = 0, in which case the loop terminates

Application of Loop Variant:

inital value, and thus upper bound on the number of iterations, is
f (A,heap-size(A)− 1) = blog2 heap-size(A)c
loop body and all other steps require constant time

worst-case running time is in O(log heap-size(A)).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 25 / 74

Operations on Binary Heaps Insertion

Step 2: Termination and Efficiency

Suppose that the given key is greater than the largest value stored in the
Max-Heap represented by A when this operation is performed.

Lower Bound for Number of Steps Executed:

Ω(log heap-size(A))

Conclusion: The worst-case cost of this operation is

Θ(log heap-size(A))

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 26 / 74

Operations on Binary Heaps Deletion

DeleteMax: Specification of a Problem

Signature: T deleteMax(T[] A)

Preconditon 1:

a) A is an array representing a Max-Heap that contains values of type T

b) heap-size(A) > 0

Postcondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) The value returned, max, is the largest value that was stored in this
Max-Heap immediately before this operation

c) A copy of max has been removed from the multiset of values stored in
this Max-Heap, which has otherwise been unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 27 / 74

Operations on Binary Heaps Deletion

DeleteMax: Specification of Problem

Precondition 2:

a) A is an array representing a Max-Heap that contains values of type T

b) heap-size(A) = 0

Postcondition 2:

a) An EmptyHeapException is thrown

b) A (and the Max-Heap it represents) has not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 28 / 74



Operations on Binary Heaps Deletion

Deletion, Step 1

Pseudocode:

T deleteMax(T[] A)

if heap-size(A) > 0 then
max = A[0]
A[0] = A[heap-size(A)-1]
heap-size(A) = heap-size(A)− 1
The rest of this operation will be described in Step 2
return max

else
throw new EmptyHeapException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 29 / 74

Operations on Binary Heaps Deletion

Example: Deletion, Step 1

Suppose that A is as follows.

6 3

1

8

7

9

4

2

0 1 2 3 4 5 6 7

9 8 4 7 6 2 3 1

A.length = 8, heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 30 / 74

Operations on Binary Heaps Deletion

Example: Deletion, Step 1

After Step 1, max=9 and A is as follows:

6 3

8

7

4

2

1
0 1 2 3 4 5 6 7

1 8 4 7 6 2 3 1

A.length = 8, heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 31 / 74

Operations on Binary Heaps Deletion

Step 2: Restoring the Max-Heap Property

Situation After Step 1:

A copy of the maximum element has been removed from the multiset
stored in the heap, as required

If the heap is still nonempty then a value has been moved from the
deleted node to the root

If the heap now has size at most one, or its size is at least two and
the value at the root is larger than the value(s) at its children, then
we have produced a Max-Heap

Otherwise we should move the value at the root down in the heap by
repeatedly exchanging it with the largest value at a child, until the
Max-Heap property has been restored

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 32 / 74



Operations on Binary Heaps Deletion

Step 2: Restoring the Max-Heap Property

j = 0
while j < heap-size(A) do

` = left(j); r = right(j); largest = j
if ` < heap-size(A) and A[`] > A[largest] then
largest = `

end if
if r < heap-size(A) and A[r] > A[largest] then
largest = r

end if
if largest 6= j then
tmp = A[j]; A[j] = A[largest]; A[largest] = tmp;
j = largest

else
j = heap-size(A)

end if
end while

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 33 / 74

Operations on Binary Heaps Deletion

Example: Execution of Step 2

Consider the following heap, which is produced using our ongoing example
at the end of Step 1:

6 3

8

7

4

2

1
0 1 2 3 4 5 6 7

1 8 4 7 6 2 3 1

A.length = 8, heap-size(A) = 7

Initial value of j: 0

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 34 / 74

Operations on Binary Heaps Deletion

Example: Execution of Step 2

A and j are as follows after the first execution of the body of this loop:

6 37

4

2

8

1

0 1 2 3 4 5 6 7

8 1 4 7 6 2 3 1

A.length = 8, heap-size(A) = 7

Current value of j: 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 35 / 74

Operations on Binary Heaps Deletion

Example: Execution of Step 2

A and j are as follows after the second execution of the body of this loop:

6 3

4

2

8

7

1

0 1 2 3 4 5 6 7

8 7 4 1 6 2 3 1

A.length = 8, heap-size(A) = 7

Current value of j: 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 36 / 74



Operations on Binary Heaps Deletion

Example: Execution of Step 2

A and j are as follows after the third execution of the body of this loop:

6 3

4

2

8

7

1

0 1 2 3 4 5 6 7

8 7 4 1 6 2 3 1

A.length = 8, heap-size(A) = 7

Current value of j: 7

The loop terminates at this point.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 37 / 74

Operations on Binary Heaps Deletion

Step 2: Partial Correctness

The following properties are satisfied at the beginning of each execution of
the body of the loop:

a) The first heap-size(A) entries of A are the multiset obtained from
the original contents of the heap by deleting a copy of its largest value

b) j is an integer such that 0 ≤ j < heap-size(A)

c) For every integer h such that 0 ≤ h < heap-size(A) and h 6= j,

if left(h) < heap-size(A) then A[left(h)] ≤ A[h]
if right(h) < heap-size(A) then A[right(h)] ≤ A[h]

d) If j > 0 and left(j) < heap-size(A) then
A[left(j)] ≤ A[parent(j)]

e) If j > 0 and right(j) < heap-size(A) then
A[right(j)] ≤ A[parent(j)]

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 38 / 74

Operations on Binary Heaps Deletion

Step 2: Partial Correctness

The following properties are satisfied at the end of every execution of the
body of this loop.

j is an integer such that 0 ≤ j ≤ heap-size(A)

Properties (a), (c), (d) and (e) of the loop invariant are satisfied

On termination of this loop,

j = heap-size(A)

Properties (a), (c), (d) and (e) of the loop invariant are satisfied

Exercises:

1 Sketch proofs of the above claims.

2 Use these to prove the partial correctness of this algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 39 / 74

Operations on Binary Heaps Deletion

Step 2: Termination and Efficiency

Loop Variant:

f (A,j) =

{
1 + height(j) if 0 ≤ j < heap-size(A)

0 if j = heap-size(A)

Justification:

integer valued, decreases by 1 after each iteration (j replaced by root
of a sub-heap)

f (A, j) = 0 implies that j = heap-size(A) (loop terminates)

Application of Loop Variant:

inital value, and thus upper bound on the number of iterations, is
f (A, 0) = 1 + height(0) = blog heap-size(A)c
loop body and all other steps require constant time

worst-case running time is in O(log heap-size(A)).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 40 / 74



Operations on Binary Heaps Deletion

Step 2: Termination and Efficiency

Suppose that the value moved to the root, at the end of step 1, is the
smallest value in the heap.

Lower Bound for Number of Steps Executed:

Ω(log heap-size(A))

Conclusion: The worst-case cost of this operation is

Θ(log heap-size(A))

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 41 / 74

Applications of Binary Heaps HeapSort

HeapSort

A deterministic sorting algorithm that can be used to sort an array of
length n using Θ(n log n) operations in the worst case

Unlike MergeSort (which has the same asymptotic worst-case
performance) this algorithm can be used to sort “in place,” overwriting the
input array with the output array, and using only a constant number of
additional registers for storage

A disadvantage of this algorithm is that it is a little bit more complicated
than the other asymptotically fast sorting algorithms we are studying (and
seems to be a bit slower in practice)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 42 / 74

Applications of Binary Heaps HeapSort

HeapSort

Idea:

An array A of positive length, storing values from some ordered
type T, can be turned into a Max-Heap of size 1 simply by setting
heap-size(A) to be 1

Inserting A[1],A[2], . . . ,A[A.length-1] produces a Max-Heap
while reordering the entries of A (without changing them, otherwise)

Repeated calls to deleteMax will then return the entries, listed in
decreasing order, while freeing up the space in A where they should be
located when sorting the array.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 43 / 74

Applications of Binary Heaps HeapSort

HeapSort

void heapSort(T[] A)

heap-size(A) = 1
i = 1
while i < A.length do

insert(A, A[i])
i = i + 1

end while
i = A.length− 1
while i > 0 do
largest = deleteMax(A)
A[i] = largest
i = i− 1

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 44 / 74



Applications of Binary Heaps HeapSort

Example (Input)

6

8

3

2

7 4

1 9

0 1 2 3 4 5 6 7

2 7 4 1 6 9 3 8

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 45 / 74

Applications of Binary Heaps HeapSort

Example: Before First Execution,
Loop Body, First Loop

2
0 1 2 3 4 5 6 7

2 7 4 1 6 9 3 8

heap-size(A) = 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 46 / 74

Applications of Binary Heaps HeapSort

Example: Before Second Execution,
Loop Body, First Loop

7

2

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 47 / 74

Applications of Binary Heaps HeapSort

Example: Before Third Execution,
Loop Body, First Loop

7

2 4

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 48 / 74



Applications of Binary Heaps HeapSort

Example: Before Fourth Execution,
Loop Body, First Loop

1

7

2 4

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 4

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 49 / 74

Applications of Binary Heaps HeapSort

Example: Before Fifth Execution,
Loop Body, First Loop

7

6 4

1 2

0 1 2 3 4 5 6 7

7 6 4 1 2 9 3 8

heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 50 / 74

Applications of Binary Heaps HeapSort

Example: Before Sixth Execution,
Loop Body, First Loop

9

6 7

1 2 4

0 1 2 3 4 5 6 7

9 6 7 1 2 4 3 8

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 51 / 74

Applications of Binary Heaps HeapSort

Example: Before Seventh Execution,
Loop Body, First Loop

9

6 7

1 2 4 3

0 1 2 3 4 5 6 7

9 6 7 1 2 4 3 8

heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 52 / 74



Applications of Binary Heaps HeapSort

Example: After Seventh Execution,
Loop Body, First Loop

8

9

7

6 2 4 3

1

0 1 2 3 4 5 6 7

9 8 7 6 2 4 3 1

heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 53 / 74

Applications of Binary Heaps HeapSort

Example: Before First Execution,
Loop Body, Second Loop

i = 7

8

9

7

6 2 4 3

1

0 1 2 3 4 5 6 7

9 8 7 6 2 4 3 1

heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 54 / 74

Applications of Binary Heaps HeapSort

Example: Before Second Execution,
Loop Body, Second Loop

i = 6

8

6 7

1 2 4 3

0 1 2 3 4 5 6 7

8 6 7 1 2 4 3 9

heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 55 / 74

Applications of Binary Heaps HeapSort

Example: Before Third Execution,
Loop Body, Second Loop

i = 5

4

1

7

6

2 3

0 1 2 3 4 5 6 7

7 6 4 1 2 3 8 9

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 56 / 74



Applications of Binary Heaps HeapSort

Example: Before Fourth Execution,
Loop Body, Second Loop

i = 4

4

1

6

3

2

0 1 2 3 4 5 6 7

6 3 4 1 2 7 8 9

heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 57 / 74

Applications of Binary Heaps HeapSort

Example: Before Fifth Execution,
Loop Body, Second Loop

i = 3

1

3

4

2

0 1 2 3 4 5 6 7

4 3 2 1 6 7 8 9

heap-size(A) = 4

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 58 / 74

Applications of Binary Heaps HeapSort

Example: Before Sixth Execution,
Loop Body, Second Loop

i = 2

2

3

1

0 1 2 3 4 5 6 7

3 1 2 4 6 7 8 9

heap-size(A) = 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 59 / 74

Applications of Binary Heaps HeapSort

Example: Before Seventh Execution,
Loop Body, Second Loop

i = 1

1

2
0 1 2 3 4 5 6 7

2 1 3 4 6 7 8 9

heap-size(A) = 2

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 60 / 74



Applications of Binary Heaps HeapSort

Example: After Seventh Execution,
Loop Body, Second Loop

i = 0

1
0 1 2 3 4 5 6 7

1 2 3 4 6 7 8 9

heap-size(A) = 1

Stop — array is sorted!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 61 / 74

Applications of Binary Heaps HeapSort

First Loop — Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of
each execution of the body of the first loop.

a) i is an integer such that 1 ≤ i < A.length

b) A represents a heap with size i

c) The entries of the array A have been reordered but are otherwise
unchanged

At the end of each execution of the body of the first loop, the following
properties are satisfied.

i is an integer such that 1 ≤ i ≤ A.length

Parts (b) and (c) of the loop invariant are satisfied

On termination of this loop i = A.length, so A represents a heap with
size A.length, and the entries of A have been reordered but are
otherwise unchanged.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 62 / 74

Applications of Binary Heaps HeapSort

First Loop — Termination and Efficiency

Loop Variant: A.length− i

Application:

Number of executions of the body of this loop is at most:

A.length− 1

The cost of a single execution of the body of this loop is at most: k

O(log n), where n = A.length

Conclusion: The number of steps used by this loop in the worst case
is at most:

O(n log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 63 / 74

Applications of Binary Heaps HeapSort

Second Loop — Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of
each execution of the body of the second loop.

a) i is an integer such that 1 ≤ i < A.length

b) A represents a heap with size i + 1

c) if i < A.length− 1 then A[j] ≤ A[i+1] for every integer j such
that 0 ≤ j ≤ i

d) A[j] ≤ A[j+1] for every integer j such that
i + 1 ≤ j < A.length− 1

e) the entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 64 / 74



Applications of Binary Heaps HeapSort

Second Loop — Partial Correctness

At the end of each execution of the body of the second loop, the following
properties are satisfied.

i is an integer such that 0 ≤ i < A.length

Parts (b), (c), (d) and (e) of the loop invariant are satisfied

On termination i = 0 and parts (b), (c), (d) and (e) of the loop invariant
are satisfied. Notes that, when i = 0, parts (c) and (d) imply that the
array is sorted, as required.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 65 / 74

Applications of Binary Heaps HeapSort

Second Loop — Termination and Efficiency

Loop Variant: i

Application:

Number of executions of the body of this loop is at most:

A.length− 1

The cost of a single execution of the body of this loop is at most:

O(log n), where n = A.length

Conclusion: The number of steps used by this loop in the worst case
is at most:

O(n log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 66 / 74

Applications of Binary Heaps HeapSort

Analysis of Worst-Case Running Time, Concluded

Exercise: Show that if A is an array with length n, containing n distinct
entries that already sorted in increasing order, then this HeapSort
algorithm uses Ω(n log n) steps on input A.

Conclusion: The worst-case running time of HeapSort (when given an
input array of length n) is in Θ(n log n).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 67 / 74

Applications of Binary Heaps Priority Queues

Priority Queues

Definition: A priority queue is a data structure for maintaining a
multiset S of elements, of some type V, each with an associated value (of
some ordered type P) called a priority.

A class that implements max-priority queue provides the following
operations (not, necessarily, with these names):

void insert(V value, P priority): Insert the given value
into S, using the given priority as its priority in this priority queue

V maximum(): Report an element of S stored in this priority that
has highest priority, without changing the priority queue (or S)

V extract-max(): Remove an element of S with highest priority
from the priority queue (and from S) and return this value as output

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 68 / 74



Applications of Binary Heaps Priority Queues

Priority Queues

Priority Queues in Java:

Class PriorityQueue in the Java Collections framework implements
a “min-priority queue” — which would provide methods minimum
and extract-min to replace maximum and extract-max,
respectively

Also implements the Queue interface, so the names insert,
minimum, and extract-min of methods are replaced by the names
add, peek, and remove, respectively.

Furthermore, the signature of insert is a little different — no
priority is provided — because the values themselves are used as
their priorities (according to their “natural order”)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 69 / 74

Applications of Binary Heaps Priority Queues

Priority Queues

Dealing With This Restriction:

In order to provide more general priorities, one can simply write a
class, each of whose objects “has” a value of type V (that is, the
element of S it represents) and that also “has” a value of type P (that
is, the priority). The class should implement the Comparable
interface, and compareTo should be implemented using the ordering
for priorities

Applications:

Scheduling: Priorities reflect the order of requests and determine the
order in which they should be served

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 70 / 74

Applications of Binary Heaps Priority Queues

Implementation

Binary Heaps are often used to implement priority queues.

Example: One representation of a max-priority queue including keys
S = {2, 4, 8, 12, 14, 16} is as follows:

16

12 14

2 4 8

0 1 2 3 4 5 6 7

16 12 14 2 4 8 9 3

A.length = 8;
heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 71 / 74

Applications of Binary Heaps Priority Queues

Implementation of Operations

A “max-priority queue” can be implemented, in a straightforward way,
using a Max-Heap.

insert: Use the insert method for the binary heap that is being
used to implement this priority queue

maximum: Throw an exception if the binary heap has size zero;
return data stored at position 0 if the array that represents the heap,
otherwise

extract-min: Use the deleteMax method for the binary heap that
implements this priority queue

Consequence: If the priority queue has size n then insert
and extract-min use Θ(log n) operations in the worst case, while
maximum uses Θ(1) operations in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 72 / 74



Applications of Binary Heaps Priority Queues

Binomial and Fibonacci Heaps

Introduction to Algorithms, Chapter 19 and 20

Better than binary heaps if Union operation must be supported:

creates a new heap consisting of all nodes in two input heaps

Function Binary Heap Binomial Heap Fib. Heap
(worst-case) (worst-case) (amortized)

Insert Θ(log n) O(log n) Θ(1)
Maximum Θ(1) O(log n) Θ(1)

Extract-Max Θ(log n) Θ(log n) O(log n)
Increase-Key Θ(log n) Θ(log n) Θ(1)

Union Θ(n) O(log n) Θ(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 73 / 74

References

References

Further Reading and Java Code:

Data Structures & Algorithms in Java, Chapter 12

Additional Reading:

Introduction to Algorithms, Chapter 6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #25-27 74 / 74


	Definition
	Representation
	Operations on Binary Heaps
	Insertion
	Deletion

	Applications of Binary Heaps
	HeapSort
	Priority Queues

	References

