Outline

© Introduction

Computer Science 331 @ Hash Tables with Chaining
Hash Tables @ Overview
@ Cost Analysis
@ A Variation

Mike Jacobson

© Hash Tables with Open Addressing
Department of Computer Science @ Overview
University of Calgary ° Operations
@ Collision Resolution
@ Analysis

@ Summary
© References

Lectures #19-20

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 1/ 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 2 /40

Introduction

Common Situation What is a Hash Table?

Introduction

We wish to use a dictionary (or mapping), under the following

_ A hash table is a generalization of an ordinary array.
circumstances:

@ The “universe” of possible values for keys is extremely large. Features:
@ We have a much smaller bound on the (maximal) size of the @ Array size is generally chosen to be comparable to (perhaps, a small
dictionary we will need to support. multiple of) our bound on dictionary size

@ The only dictionary operations we need are

° '"'t'al'zat'on_Of an empty C!'CF'O"ary' @ However, the average-case performance is extremely good — better
o searches for items in the dictionary,

. . . . - than that of the other implementations of a dictionary we have
e insertions of new items into the dictionary, . |
o deletions of items from the dictionary. considered!

@ Worst-case performance is generally poor

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 3 /40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 4 /40

Introduction Introduction

Notation and Definitions General Difficulty: Collisions

More terminology:
@ A key k hashes to an array location ¢ if h(k) = £.

@ A collision occurs if two keys ki and ky (used in the dictionary) hash
m: Table Size: The size of the array used to build to the same location, that is,

a hash table
h(ki) = h(k2) .

U: Universe: The set of possible values for keys

T: The array that is used.

h: Hash Function: A function Note: Collisions are unavoidable if the size of the dictionary is greater
heU—1{01,. .. m—1) than the table size.

There are several different kinds of hash tables that use different ways to

deal with collisions. We will study:

Idea: try to store element x with key k in location T[h(k)]. o chaining

used to map keys to array locations

@ open addressing

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 5/ 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 6 /40

Hash Tables with Chaining Overview Hash Tables with Chaining Overview

Collision Resolution with Chaining Example

. . . U {1,2,...,200}
In a hash table with chaining: 0
@ we put all the keys (used in the dictionary) that hash to the same 1 __, m: 8
location £ into a linked list. 2 1+7] T: As shown to the left.
° Eor 0</? <m, T[¢] is a pointer/reference to the head of the linked 2 h: Function such that
list for location /. 2 .
— 12 :
o Abuse of Notation: Sometimes T [¢] will be used as the name for the . h:{1,2,...,200} —{0,1,....7},
above linked list (instead of a pointer to it). _
. eg. h(k) = k mod 8 for k € U.
7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 7 /40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 8 /40

Hash Tables with Chaining Overview Hash Tables with Chaining Cost Analysis

Dictionary Operations Worst-Case Analysis

Cost of an operation involving a key k is essentially the cost the same
Search for an item with key k: operation involving k, using the linked list T[h(k)].

@ Search for k in the linked list T[h(k)]. Problem:

Insertion of an item [/ with key k;
@ Search for k in the linked list T[h(k)].

@ If the search was unsuccessful, insert | onto the front of this linked
list.

[=>]
}

e R Ty

Deletion of an item with key k;
o Perform a deletion of an item with key k from the linked list T[h(k)].

[~]

It is possible for all dictionary items to be part of this linked list!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 9 /40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 10 / 40

Hash Tables with Chaining Cost Analysis Hash Tables with Chaining Cost Analysis

Average Case Analysis Simple Uniform Hashing

_ _ o _ Assumption: Simple Uniform Hashing:
We will consider the average cost of dictionary operations when a hash

. - . o l
table is used to represent a dictionary with n elements. @ Each key is hashed to location £ with the same probability, -, for

0<l< m.

The average cost of these operations depends on @ Furthermore, each key is hashed to a location independently of where

@ the likelihood of each kind of operation, and any other key is hashed to.

the shape of the hash table.
¢ the shape of the hash table That is: If ky, ko, . . ., ky are the keys in the dictionary then

The shape of the hash table only depends on the locations to which keys h(ki) =#¢1 and h(ky) =/ and --- and h(k,) = ¢,
are hashed — not on the values of the keys, themselves.
with probability (1/m)", for each choice of locations ¢1, 02, ..., (.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 11 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 12 / 40

Hash Tables with Chaining Cost Analysis

Hash Tables with Chaining Cost Analysis

Load Factor Average Case Analysis: Summary

Expected Numbers of Comparisons Required:
Load Factor of T: The average \ of the lengths of the linked lists (or
“chains”) T[0], T[1],..., T[m—1]. Unsuccessful Search for a key k :

@ Assumption: No additional assumptions required.

o Expected Cost: A = &

A = n/m (hash table has m locations, dictionary has n elements). m

Successful Search:

@ Assumption: Search for each key with probability %

Suppose T[i] has length n; for 0 < i < m.

1 L : A
@ Then A= —-(no + n1 + - + np_1) (by definition). o Expected Cost: 14 5 — 5. € ©(1+ A)
@ However, since each key is hashed to exactly one location, and there
are nkeys, ng+ny+---+nm_1=n,5 \X=n/m.] Insertion of New Element: same as unsuccessful search
Deletion of Existing Element: same as successful search
Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 13 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 14 / 40

Hash Tables with Chaining = A Variation Hash Tables with Open Addressing Overview

A Variation Open Addressing

Suppose that the universe U is ordered, so that we can also ask whether

ki < kz for any two keys ky and k. In a hash table with open addressing, all elements are stored in the hash
table itself.
In this case we could maintain the keys in each of our lists in sorted order.
@ Worst case costs for operations are unchanged. For 0 < i< m, T[i] is either
@ Expected cost for a successful search using the usual assumptions is @ an element of the dictionary being stored,
also unchanged o NIL, or
@ However, the expected cost for an unsuccessful search is somewhat o DELETED (to be described shortly!)
reduced — because we can use the list ordering to end an
unsuccessful search a bit earlier. Note: The textbook refers to DELETED as a “dummy value.”

@ The overhead to maintain sorted order is insignificant, so this
optimization is worthwhile.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 15 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 16 / 40

Hash Tables with Open Addressing Overview Hash Tables with Open Addressing Overview

Example New Definition of a Hash Function

0 1
T: [NIL [25|

3 4 5 6 7

We may need to make more than one attempt to find a place to insert an
[NIL [12 [NIL [14 [22 |

element.

2
2

We'll use hash functions of the form
U=1{1,2,...,200}

m=28 h:Ux{0,1,...,m—1} - {0,1,...,m—1}

T : as shown above

h(k,i): Location to choose to place key k on an i attempt to
insert the key, if the locations examined on attempts
0,1,...,i — 1 were already full.

ho : Function such that

ho :{1,2,...,200} — {0,1,...,7}
This location is not used if already occupied
Eg. ho(k) = k mod 8 for k € U. (i.e., if not NIL or DELETED)

ho used here for first try to place key in table.

Function hg(k) from previous slide was: h(k,0)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 17 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 18 / 40

Hash Tables with Open Addressing Overview Hash Tables with Open Addressing Operations

Probe Sequence Search Pseudocode

The following algorithm either returns an integer i such that T[i] is
equal to k, or throws a notFoundException (because k is not stored in
the hash table).

The sequence of addresses

(h(k,0), h(k,1),...,h(k,m—1))

int h (key k
is called the probe sequence for key k 1n. search (key k) {

i=0;
. . . do {
Initial Requirement: = bk, 1);
(h(k.0), h(k, 1), .., h(k,m — 1)) if (T03] ==k) {
return j;
is always a permutation of the integers between 0 and m — 1. };
i++;

@ This is highly desirable condition. .. but it is not satisfied by some of

the hash functions that are frequently used. t while ((T[j] !'=nil) && (i <m));

o . . throw notFoundException;
@ We will disucss what happens in the general case later in these notes. }

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 19 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 20 / 40

Hash Tables with Open Addressing Operations Hash Tables with Open Addressing Operations

Example: Search for 9 Insert Pseudocode: One Algorithm

) 4 5 6 7 The following algorithm either reports where the key k has been inserted
T ’ NIL ‘ 25 ‘ 2 ‘ NIL ‘ 12 ‘ NIL ‘ 14 ‘ 22 ‘ or throws an appropriate exception
int insert (key k) {
h : function such that i=0;
while (i < m) {
h:Ux{0,1,...,7} - {0,1,...,7} j = hk, 1);
if (T[j] == nil) {
and h(k,i)=k+imod8for ke Uand 0 </ <7. T[j] = k; return j;
} else {
Probes when Searching for 9 : if (T[j] == k) { throw foundException; };
0 i=0:h(k0)=k+0mod8=1, T[1] =25 b
o i=1:hk1)=k+1mod8=2 T[2] =2 }.”*;
® i=2:h(k,2)=k+2mod8=3, T[3]=NIL throw tableFullException;
Report that 9 is not in the hash table }
Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 21 / 40

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 22 / 40

Hash Tables with Open Addressing Operations

Hash Tables with Open Addressing Operations

Example: Insert 1 Delete Pseudocode

The next method either deletes k or returns an exception to indicate
that k was not in the table.

0 1 2 3 4 5 6 7
T:[NIL[25 [2[NIL[I2][NIL[14]22] void delete (key k) {
i=0;
do {
Probe sequence: j = h(k, i);
@i =0:hk,0)=k+0mod8=1, T[1]=25 if (T[] == k) {
e i=1:hlk,])=k+1mod8=2, T[2] =2 T[j] = deleted; return;
o i=2:h(k,2)=k+2mod8=3, T[3] = NIL }s
i++;
. 1= i L < .
Set T[3] = 1 } while ((T[j] nil) & (i < m));

throw notFoundException;

}

Question: Why not set T[j] = NIL, above?

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 23 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 24 / 40

Hash Tables with Open Addressing Operations Hash Tables with Open Addressing Operations

Example: Delete 22 Complication

0 1 2 3 4 5 6 7
T [NIL[25 [2 [NIL [12 [NIL [14] 22|

The “value” DELETED is never overwritten.

Probe sequence: @ once T[j] is marked DELETED it is not used to store an element of
o i=0:h(k0)=k+0mod8 =6, T[6] = 14 the dictionary!
oi=1:hk1)=k+1mod8=7, T[7] =22 @ Eventually a hash table might report overflows on insertions, even if

the the dicti it st i ty!
Set T[7] = DEL e the dictionary it stores is empty

Insert 307 Unfortunately, cannot simply overwrite DELETED with NIL:

o i=0:h(k,0)=k-+0mod8=6, T[6] =14 @ can cause searches to fail when they should succeed because insert

) (terminates when a NIL entry is reached
@ i=1:h(k,0)=k+1mod8=7, T[7] =DEL
(

© i=2:h(k0)=k+2mod8=0, T[0] = NIL
Set T[0] = 30

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 25 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 26 / 40

Hash Tables with Open Addressing Operations Hash Tables with Open Addressing Collision Resolution

Insert: Another Algorithm More General Probe Sequences

As previously noted it is not always true, in practice, that the sequence of
addresses

Exercise:

@ Write another version of the “Insert” algorithm that allows

“DELETED" to be overwritten with an input key k (h(k,0), h(k,1),..., h(k,m—1))
@ Don't Forget: Make sure k can never be stored in two or more . .
. . IS @ permutation
locations at the same time!

Good News: In this more general situation, it is still true that

How to do this: @ the search algorithm will return an integer i such that T[i] is

@ if an entry marked DELETED is encountered during probing, store it's equal to k if the given key k is stored in the table

index @ the exceptions FoundException and notFoundException (used
in the algorithms given previously) will still be thrown (precisely)

@ once NIL is reached, indicating that an entry with the given key is not
when they are needed

currently in the list, overwrite the previously-detected DELETED
entry Bad News: tableFullException might now be thrown even though
there are still some nil entries in the table

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 27 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 28 / 40

Hash Tables with Open Addressing Collision Resolution

Linear Probing

Hash Tables with Open Addressing Collision Resolution

Strengths and Weaknesses

Let h(k) = h(k,0)

Simple Form of Linear Probing:

h(k,i) = h(k) + i mod m fori>1

Generalization:

h(k,i) = h(k)+cimod m fori>1

Strengths:

o If c =1 (or ged(c, m) = 1) then the probe sequence is a permutation
of 0,1,...,m—1

@ This hash function is easy to compute: For i >1

h(k,i) = h(k,i—1)+cmod m .

Weakness:

@ Primary Clustering: long runs of occupied slots can build up, causing

for some nonzero constant ¢ (not depending on k or i) long probe searches

Mike Jacobson (University of Calgary) Computer Science 331

Hash Tables with Open Addressing Collision Resolution

Lectures #19-20 29 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 30 / 40

Hash Tables with Open Addressing Collision Resolution

Quadratic Probing

Let h(k) = h(k,0)
Simple form of Quadratic Probing:

h(k,i) = h(k) + i> mod m
= h(k,i—1)+2i —1mod m

Generalization:
h(k,i) = h(k) + coi + c1i®

for a constant ¢y and a nonzero constant c;.

Mike Jacobson (University of Calgary) Computer Science 331

Strengths and Weaknesses

Strengths:

o If gcd(m, c) =1 and m > 3 is prime then the probe sequence includes
(slightly) more than half of 0,1,...,m—1

@ The hash function is easy to compute:
fOFiZ]. h(k7i)_h(k’i_1):a0+o[1i

for constants ag and oy

Weakness:

o Secondary Clustering: two keys with the same initial probe position
have the same probe sequences

Lectures #19-20 31/ 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 32 /40

Hash Tables with Open Addressing Collision Resolution Hash Tables with Open Addressing Collision Resolution

Double Hashing Strengths and Weaknesses

Suppose hg and h; are both hash functions depending only on k, i.e.,

ho b s U — {0,1,...,m—1} Strengths:
e If mis prime and gcd(h1(k), m) =1 then the probe sequence for k is
and such that a permutation of 0,1,.... m—1
hi(k) # 0 mod m @ Analysis and experimental results both suggest extremely good
for every key k. expected performance
Double Hashing;: Weakness:

hi, k) = (ho(k) + i h(K)) mod m @ A bit more complicated than linear (or quadratic) probing

Eg. ho(k) = kmod m, hy(k) =1+ (k mod m—1)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 33 /40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 34 /40

Hash Tables with Open Addressing =~ Analysis Hash Tables with Open Addressing = Analysis

Summary The Best We Can Hope For

Uniform Hashing Assumption: Each of the m! permutations is equally

Deletions complicate things: _
likely as a probe sequence for a key.

@ Hash tables with chaining are often superior unless deletions are C letelv U listic! Onl £ th b "
extremely rare (or do not happen at all) ° o.mp (.etey nrea |st|c: nly .m of these pro e.sequenceszare possible
using linear or quadratic probing; only (approximately) m* are

. . possible with double hashing
Expected number of probes for searches is too high for these tables to be

useful when X is close to one, where . . .
Expected number of probes under this assumption: approximately

N number of locations storing keys or DELETED
B m Y (unsuccessful search)

In 1 (successful search)

S e

Remaining slides show results concerning tables produced by inserting

nkeys ki, ko, ... Ky into an empty table (so A = n/m) References: Textbook; Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 35 /40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 36 / 40

Hash Tables with Open Addressing =~ Analysis Hash Tables with Open Addressing =~ Analysis

Analysis of Linear Probing (with ¢ = 1) Reference for Additional Results

Assumption: Each of the m" sequences

ho(ka), ho(k2), - - ho(kn) Knuth: “Exhaustive tests show that double hashing with two independent

hash functions hg and h; behaves essentially like uniform hashing, for all

of initial probes are assumed to be equally likely. _
practical purposes.”

Expected number of probes is approximately o _
For additional details, and more results, see

(1 + (L)) unsuccessful search Knuth, The Art of Computer Programming, Volume 3

Nl= N

P
(%) successful search
Reference: Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 37 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 38 / 40

Summary References

Summary References

Advantages of Open Addressing:

@ does not have the storage overhead due to pointers (required for the

linked lists in chaining)

@ better cache utilization during probing if the entries are small e Data Structures & Algorithms in Java, Chapter 11

@ Introduction to Algorithms, Chapter 11 — additional information

@ good choice when entry sizes are small _ _ .
& Y about hash tables (including much of the material in these notes)

@ Introduction to Algorithms, Appendix C — more information about

Advantages of Chaining:
8 8 useful concepts from probability and statistics

e insensitive to clustering (only require good hash function)

e grows dynamically and fills up gracefully (chains all grow equally long
on average), unlike open addressing

@ good choice when entries are large and load factor can be high

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 39 / 40 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 40 / 40

	Introduction
	Hash Tables with Chaining
	Overview
	Cost Analysis
	A Variation

	Hash Tables with Open Addressing
	Overview
	Operations
	Collision Resolution
	Analysis

	Summary
	References

