
Computer Science 331
Hash Tables

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #19-20

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 1 / 40

Outline

1 Introduction

2 Hash Tables with Chaining
Overview
Cost Analysis
A Variation

3 Hash Tables with Open Addressing
Overview
Operations
Collision Resolution
Analysis

4 Summary

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 2 / 40

Introduction

Common Situation

We wish to use a dictionary (or mapping), under the following
circumstances:

The “universe” of possible values for keys is extremely large.

We have a much smaller bound on the (maximal) size of the
dictionary we will need to support.

The only dictionary operations we need are

initialization of an empty dictionary,
searches for items in the dictionary,
insertions of new items into the dictionary,
deletions of items from the dictionary.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 3 / 40

Introduction

What is a Hash Table?

A hash table is a generalization of an ordinary array.

Features:

Array size is generally chosen to be comparable to (perhaps, a small
multiple of) our bound on dictionary size

Worst-case performance is generally poor

However, the average-case performance is extremely good — better
than that of the other implementations of a dictionary we have
considered!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 4 / 40



Introduction

Notation and Definitions

U: Universe: The set of possible values for keys

m: Table Size: The size of the array used to build
a hash table

T : The array that is used.

h: Hash Function: A function

h : U → {0, 1, . . . ,m − 1}

used to map keys to array locations

Idea: try to store element x with key k in location T [h(k)].

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 5 / 40

Introduction

General Difficulty: Collisions

More terminology:

A key k hashes to an array location ` if h(k) = `.

A collision occurs if two keys k1 and k2 (used in the dictionary) hash
to the same location, that is,

h(k1) = h(k2) .

Note: Collisions are unavoidable if the size of the dictionary is greater
than the table size.

There are several different kinds of hash tables that use different ways to
deal with collisions. We will study:

chaining

open addressing

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 6 / 40

Hash Tables with Chaining Overview

Collision Resolution with Chaining

In a hash table with chaining:

we put all the keys (used in the dictionary) that hash to the same
location ` into a linked list.

For 0 ≤ ` < m, T [`] is a pointer/reference to the head of the linked
list for location `.

Abuse of Notation: Sometimes T [`] will be used as the name for the
above linked list (instead of a pointer to it).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 7 / 40

Hash Tables with Chaining Overview

Example

U: {1, 2, . . . , 200}

m: 8

T : As shown to the left.

h: Function such that

h : {1, 2, . . . , 200} → {0, 1, . . . , 7},

eg. h(k) = k mod 8 for k ∈ U.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 8 / 40



Hash Tables with Chaining Overview

Dictionary Operations

Search for an item with key k ;

Search for k in the linked list T [h(k)].

Insertion of an item I with key k ;

Search for k in the linked list T [h(k)].

If the search was unsuccessful, insert I onto the front of this linked
list.

Deletion of an item with key k;

Perform a deletion of an item with key k from the linked list T [h(k)].

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 9 / 40

Hash Tables with Chaining Cost Analysis

Worst-Case Analysis

Cost of an operation involving a key k is essentially the cost the same
operation involving k , using the linked list T [h(k)].

Problem:

It is possible for all dictionary items to be part of this linked list!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 10 / 40

Hash Tables with Chaining Cost Analysis

Average Case Analysis

We will consider the average cost of dictionary operations when a hash
table is used to represent a dictionary with n elements.

The average cost of these operations depends on

the likelihood of each kind of operation, and

the shape of the hash table.

The shape of the hash table only depends on the locations to which keys
are hashed — not on the values of the keys, themselves.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 11 / 40

Hash Tables with Chaining Cost Analysis

Simple Uniform Hashing

Assumption: Simple Uniform Hashing:

Each key is hashed to location ` with the same probability, 1
m , for

0 ≤ ` < m.

Furthermore, each key is hashed to a location independently of where
any other key is hashed to.

That is: If k1, k2, . . . , kn are the keys in the dictionary then

h(k1) = `1 and h(k2) = `2 and · · · and h(kn) = `n

with probability (1/m)n, for each choice of locations `1, `2, . . . , `n.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 12 / 40



Hash Tables with Chaining Cost Analysis

Load Factor

Load Factor of T : The average λ of the lengths of the linked lists (or
“chains”) T [0],T [1], . . . ,T [m − 1].

Claim:

λ = n/m (hash table has m locations, dictionary has n elements).

Proof.

Suppose T [i ] has length ni for 0 ≤ i < m.

Then λ = 1
m (n0 + n1 + · · ·+ nm−1) (by definition).

However, since each key is hashed to exactly one location, and there
are n keys, n0 + n1 + · · ·+ nm−1 = n, so λ = n/m.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 13 / 40

Hash Tables with Chaining Cost Analysis

Average Case Analysis: Summary

Expected Numbers of Comparisons Required:

Unsuccessful Search for a key k :

Assumption: No additional assumptions required.

Expected Cost: λ = n
m

Successful Search:

Assumption: Search for each key with probability 1
n

Expected Cost: 1 + λ
2 −

λ
2n ∈ Θ(1 + λ)

Insertion of New Element: same as unsuccessful search

Deletion of Existing Element: same as successful search

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 14 / 40

Hash Tables with Chaining A Variation

A Variation

Suppose that the universe U is ordered, so that we can also ask whether
k1 ≤ k2 for any two keys k1 and k2.

In this case we could maintain the keys in each of our lists in sorted order.

Worst case costs for operations are unchanged.

Expected cost for a successful search using the usual assumptions is
also unchanged

However, the expected cost for an unsuccessful search is somewhat
reduced — because we can use the list ordering to end an
unsuccessful search a bit earlier.

The overhead to maintain sorted order is insignificant, so this
optimization is worthwhile.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 15 / 40

Hash Tables with Open Addressing Overview

Open Addressing

In a hash table with open addressing, all elements are stored in the hash
table itself.

For 0 ≤ i < m, T [i ] is either

an element of the dictionary being stored,

NIL, or

DELETED (to be described shortly!)

Note: The textbook refers to DELETED as a “dummy value.”

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 16 / 40



Hash Tables with Open Addressing Overview

Example

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

U = {1, 2, . . . , 200}
m = 8

T : as shown above

h0 : Function such that

h0 : {1, 2, . . . , 200} → {0, 1, . . . , 7}

Eg. h0(k) = k mod 8 for k ∈ U.

h0 used here for first try to place key in table.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 17 / 40

Hash Tables with Open Addressing Overview

New Definition of a Hash Function

We may need to make more than one attempt to find a place to insert an
element.

We’ll use hash functions of the form

h : U × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1}

h(k , i): Location to choose to place key k on an i th attempt to
insert the key, if the locations examined on attempts
0, 1, . . . , i − 1 were already full.

This location is not used if already occupied
(i.e., if not NIL or DELETED)

Function h0(k) from previous slide was: h(k , 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 18 / 40

Hash Tables with Open Addressing Overview

Probe Sequence

The sequence of addresses

〈h(k , 0), h(k, 1), . . . , h(k ,m − 1)〉

is called the probe sequence for key k

Initial Requirement:

〈h(k , 0), h(k, 1), . . . , h(k ,m − 1)〉

is always a permutation of the integers between 0 and m − 1.

This is highly desirable condition. . . but it is not satisfied by some of
the hash functions that are frequently used.

We will disucss what happens in the general case later in these notes.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 19 / 40

Hash Tables with Open Addressing Operations

Search Pseudocode

The following algorithm either returns an integer i such that T[i] is
equal to k, or throws a notFoundException (because k is not stored in
the hash table).

int search (key k) {
i = 0;
do {

j = h(k, i);
if (T[j] == k) {

return j;
};
i++;

} while ((T[j] != nil) && (i < m));
throw notFoundException;

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 20 / 40



Hash Tables with Open Addressing Operations

Example: Search for 9

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

h : function such that

h : U × {0, 1, . . . , 7} → {0, 1, . . . , 7}

and h(k , i) = k + i mod 8 for k ∈ U and 0 ≤ i ≤ 7.

Probes when Searching for 9 :

i = 0 : h(k , 0) = k + 0 mod 8 = 1, T [1] = 25

i = 1 : h(k , 1) = k + 1 mod 8 = 2, T [2] = 2

i = 2 : h(k , 2) = k + 2 mod 8 = 3, T [3] = NIL

Report that 9 is not in the hash table

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 21 / 40

Hash Tables with Open Addressing Operations

Insert Pseudocode: One Algorithm

The following algorithm either reports where the key k has been inserted
or throws an appropriate exception

int insert (key k) {
i = 0;
while (i < m) {

j = h(k, i);
if (T[j] == nil) {

T[j] = k; return j;
} else {

if (T[j] == k) { throw foundException; };
};
i++;

};
throw tableFullException;

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 22 / 40

Hash Tables with Open Addressing Operations

Example: Insert 1

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

Probe sequence:

i = 0 : h(k , 0) = k + 0 mod 8 = 1, T [1] = 25

i = 1 : h(k , 1) = k + 1 mod 8 = 2, T [2] = 2

i = 2 : h(k , 2) = k + 2 mod 8 = 3, T [3] = NIL

Set T [3] = 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 23 / 40

Hash Tables with Open Addressing Operations

Delete Pseudocode

The next method either deletes k or returns an exception to indicate
that k was not in the table.

void delete (key k) {
i=0;
do {

j = h(k, i);
if (T[j] == k) {

T[j] = deleted; return;
};
i++;

} while ((T[j] != nil) && (i < m));
throw notFoundException;

}

Question: Why not set T [j ] = NIL, above?

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 24 / 40



Hash Tables with Open Addressing Operations

Example: Delete 22

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

Probe sequence:

i = 0 : h(k , 0) = k + 0 mod 8 = 6, T [6] = 14

i = 1 : h(k , 1) = k + 1 mod 8 = 7, T [7] = 22

Set T [7] = DEL

Insert 30?

i = 0 : h(k , 0) = k + 0 mod 8 = 6, T [6] = 14

i = 1 : h(k , 0) = k + 1 mod 8 = 7, T [7] = DEL

i = 2 : h(k , 0) = k + 2 mod 8 = 0, T [0] = NIL

Set T [0] = 30

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 25 / 40

Hash Tables with Open Addressing Operations

Complication

The “value” DELETED is never overwritten.

once T [j ] is marked DELETED it is not used to store an element of
the dictionary!

Eventually a hash table might report overflows on insertions, even if
the the dictionary it stores is empty!

Unfortunately, cannot simply overwrite DELETED with NIL:

can cause searches to fail when they should succeed because insert
terminates when a NIL entry is reached

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 26 / 40

Hash Tables with Open Addressing Operations

Insert: Another Algorithm

Exercise:

Write another version of the “Insert” algorithm that allows
“DELETED” to be overwritten with an input key k

Don’t Forget: Make sure k can never be stored in two or more
locations at the same time!

How to do this:

if an entry marked DELETED is encountered during probing, store it’s
index

once NIL is reached, indicating that an entry with the given key is not
currently in the list, overwrite the previously-detected DELETED
entry

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 27 / 40

Hash Tables with Open Addressing Collision Resolution

More General Probe Sequences

As previously noted it is not always true, in practice, that the sequence of
addresses

〈h(k , 0), h(k, 1), . . . , h(k ,m − 1)〉

is a permutation

Good News: In this more general situation, it is still true that

the search algorithm will return an integer i such that T[i] is
equal to k if the given key k is stored in the table

the exceptions FoundException and notFoundException (used
in the algorithms given previously) will still be thrown (precisely)
when they are needed

Bad News: tableFullException might now be thrown even though
there are still some nil entries in the table

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 28 / 40



Hash Tables with Open Addressing Collision Resolution

Linear Probing

Let h(k) = h(k , 0)

Simple Form of Linear Probing:

h(k , i) = h(k) + i mod m for i ≥ 1

Generalization:

h(k , i) = h(k) + ci mod m for i ≥ 1

for some nonzero constant c (not depending on k or i)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 29 / 40

Hash Tables with Open Addressing Collision Resolution

Strengths and Weaknesses

Strengths:

If c = 1 (or gcd(c ,m) = 1) then the probe sequence is a permutation
of 0, 1, . . . ,m − 1

This hash function is easy to compute: For i ≥ 1

h(k , i) = h(k , i − 1) + c mod m .

Weakness:

Primary Clustering: long runs of occupied slots can build up, causing
long probe searches

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 30 / 40

Hash Tables with Open Addressing Collision Resolution

Quadratic Probing

Let h(k) = h(k , 0)

Simple form of Quadratic Probing:

h(k, i) = h(k) + i2 mod m

= h(k, i − 1) + 2i − 1 mod m for i ≥ 1

Generalization:
h(k, i) = h(k) + c0i + c1i2

for a constant c0 and a nonzero constant c1.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 31 / 40

Hash Tables with Open Addressing Collision Resolution

Strengths and Weaknesses

Strengths:

If gcd(m, c) = 1 and m ≥ 3 is prime then the probe sequence includes
(slightly) more than half of 0, 1, . . . ,m − 1

The hash function is easy to compute:

h(k , i)− h(k, i − 1) = α0 + α1i

for constants α0 and α1

Weakness:

Secondary Clustering: two keys with the same initial probe position
have the same probe sequences

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 32 / 40



Hash Tables with Open Addressing Collision Resolution

Double Hashing

Suppose h0 and h1 are both hash functions depending only on k, i.e.,

h0, h1 : U → {0, 1, . . . ,m − 1}

and such that
h1(k) 6≡ 0 mod m

for every key k .

Double Hashing:

h(i , k) = (h0(k) + i h1(k)) mod m

Eg. h0(k) = k mod m, h1(k) = 1 + (k mod m − 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 33 / 40

Hash Tables with Open Addressing Collision Resolution

Strengths and Weaknesses

Strengths:

If m is prime and gcd(h1(k),m) = 1 then the probe sequence for k is
a permutation of 0, 1, . . . ,m − 1

Analysis and experimental results both suggest extremely good
expected performance

Weakness:

A bit more complicated than linear (or quadratic) probing

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 34 / 40

Hash Tables with Open Addressing Analysis

Summary

Deletions complicate things:

Hash tables with chaining are often superior unless deletions are
extremely rare (or do not happen at all)

Expected number of probes for searches is too high for these tables to be
useful when λ is close to one, where

λ =
number of locations storing keys or DELETED

m

Remaining slides show results concerning tables produced by inserting
n keys k1, k2, . . . , kn into an empty table (so λ = n/m)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 35 / 40

Hash Tables with Open Addressing Analysis

The Best We Can Hope For

Uniform Hashing Assumption: Each of the m! permutations is equally
likely as a probe sequence for a key.

Completely Unrealistic! Only m of these probe sequences are possible
using linear or quadratic probing; only (approximately) m2 are
possible with double hashing

Expected number of probes under this assumption: approximately
1

1−λ (unsuccessful search)

1
λ ln 1

1−λ (successful search)

References: Textbook; Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 36 / 40



Hash Tables with Open Addressing Analysis

Analysis of Linear Probing (with c = 1)

Assumption: Each of the mn sequences

h0(k1), h0(k2), . . . , h0(kn)

of initial probes are assumed to be equally likely.

Expected number of probes is approximately
1
2

(
1 +

(
1

1−λ

)2
)

unsuccessful search

1
2

(
1 + 1

1−λ

)
successful search

Reference: Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 37 / 40

Hash Tables with Open Addressing Analysis

Reference for Additional Results

Knuth: “Exhaustive tests show that double hashing with two independent
hash functions h0 and h1 behaves essentially like uniform hashing, for all
practical purposes.”

For additional details, and more results, see

Knuth, The Art of Computer Programming, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 38 / 40

Summary

Summary

Advantages of Open Addressing:

does not have the storage overhead due to pointers (required for the
linked lists in chaining)

better cache utilization during probing if the entries are small

good choice when entry sizes are small

Advantages of Chaining:

insensitive to clustering (only require good hash function)

grows dynamically and fills up gracefully (chains all grow equally long
on average), unlike open addressing

good choice when entries are large and load factor can be high

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 39 / 40

References

References

Data Structures & Algorithms in Java, Chapter 11

Introduction to Algorithms, Chapter 11 — additional information
about hash tables (including much of the material in these notes)

Introduction to Algorithms, Appendix C — more information about
useful concepts from probability and statistics

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #19-20 40 / 40


	Introduction
	Hash Tables with Chaining
	Overview
	Cost Analysis
	A Variation

	Hash Tables with Open Addressing
	Overview
	Operations
	Collision Resolution
	Analysis

	Summary
	References

