
Computer Science 331

Graphs and Their Representations

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #28

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 1 / 19

Outline

1 Introduction

2 Representations

Adjacency-Matrices

Adjacency-Lists

3 Generalizations

Directed Graphs

Weighted Graphs

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 2 / 19

Introduction

Undirected Graphs

An undirected graph G = (V ;E ) consists of

a �nite, nonempty set V of vertices or \nodes"

a set E of edges, where each \edge" is an unordered pair of distinct

elements of V

Also may be written as V (G ) and E (G ) to indicate association to a

particular graph.

Undirected graphs, and their generalizations, can be used to model

communication networks

knowledge and data bases

Graphs and their algorithms will be studied for the rest of this course.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 3 / 19

Introduction

Example

G :

0

1

2

3

4

6

5

G = (V ;E ) where

V = f0; 1; 2; 3; 4; 5; 6g

E = f(0; 1); (1; 2); (1; 3); (2; 3); (2; 4); (4; 6); (5; 6)g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 4 / 19



Introduction

Terminology

If u; v 2 V and u 6= v then u and v are neighbours (or, \u is adjacent

to v") if (u; v) 2 E .

If u 2 V then the degree of u is the number of neighbours of u.

Note that if jV j = n then jE j �
�
n
2

�
= n(n�1)

2 .

The graph G = (V ;E ) is dense if jE j 2 
(n2) (for n = jV j)

The graph G = (V ;E ) is sparse if jE j is signi�cantly smaller than n2.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 5 / 19

Introduction

Operations

The following operations should be supported:

Creation: It should be possible to

initialize a graph to be empty (with no vertices or edges),
add another vertex
add an edge (between a pair of existing vertices that are not already
neighbours);

Queries: It should be possible to

ask whether a given pair of vertices are neighbours,
determine the number of vertices,
determine the number of edges;

Iterate: It should be possible to iterate over

the set of vertices in the graph, as well as
the set of neighbours of any given vertex.

See page 603 in Chapter 13 for a \Graph ADT"

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 6 / 19

Representations Adjacency-Matrices

Adjacency-Matrix Representation

Assumption: Vertices are numbered 0; 1; : : : ; jV j � 1 in some way.

The adjacency-matrix representation of G consists of a jV j � jV j matrix

AG , with (i ; j)th entry ai ;j for 0 � i ; j < jV j, where

ai ;j =

(
1 if (i ; j) 2 E ,

0 if (i ; j) =2 E .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 7 / 19

Representations Adjacency-Matrices

Example

G :

0

1

2

3

4

6

5

AG : 2
666666664

0 1 0 0 0 0 0

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 1 1 0

3
777777775

Note: AG is a symmetric matrix: ai ;j = aj ;i for 0 � i ; j < jV j.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 8 / 19



Representations Adjacency-Matrices

Properties

Properties of This Representation:

simple

reasonably space-e�cient if G is dense

not space-e�cient if G is sparse!

possible to add an edge or determine whether two vertices are

neighbours in constant time

iterating over the set of neighbours of a vertex requires �(jV j)
operations, even if G is sparse

: : : a good choice if G is small or dense, not if large and sparse

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 9 / 19

Representations Adjacency-Lists

Adjacency-List Representation

The adjacency-list representation of G = (V ;E ) consists
of an array AdjG of jV j lists, one for each vertex in V .

For each u 2 V , the adjacency list AdjG (u) contains (pointers to) all the

vertices v 2 V such that (u; v) 2 E .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 10 / 19

Representations Adjacency-Lists

Example

G :

0

1

2

3

4

6

5

AdjG :

0

1

2

3

4

5

6

1

0 2 3

1 3 4

1 2

2 6

6

4 5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 11 / 19

Representations Adjacency-Lists

Properties

Properties of This Representation:

space-e�cient if G is sparse

not really space-e�cient if G is (extremely) dense!

checking whether a pair of vertices are neighbours requires more than

constant time | number of operations is linear in the degree of one

of the inputs, in the worst case

adding an edge also requires this cost (if error checking is to be

included)

iterating over the set of neighbours of a vertex is e�cient: Number of

operations used is linear in the degree of the input vertex

: : : a good choice if G is large and sparse; not if small or dense

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 12 / 19



Generalizations Directed Graphs

Directed Graphs

A directed graph (\digraph") G = (V ;E ) consists of

a �nite, nonempty set V of vertices or nodes, and

a set E of ordered pairs of elements of E (that are not necessarily

distinct)

Directed graphs can be represented using adjacency-matrices or

adjacency-lists, in much the same way that undirected graphs can.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 13 / 19

Generalizations Directed Graphs

Example

G : Adjacency-Matrix:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 14 / 19

Generalizations Directed Graphs

Example

G : Adjacency-List:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 15 / 19

Generalizations Weighted Graphs

Weighted Graphs

A weighted graph is an undirected or directed graph G = (V ;E ) for which
each edge has an associated weight.

The weights are typically given an associated weight function

w : E ! R

Weighted graphs can be represented using adjacency-matrices or adjacency

lists as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 16 / 19



Generalizations Weighted Graphs

Example

G : Adjacency-Matrix:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 17 / 19

Generalizations Weighted Graphs

Example

G : Adjacency-List:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 18 / 19

References

References

Graphs in Java

Java's standard libraries do not currently include implementations of

graphs or graph algorithms

Chapter 12 of the text includes various \Graph ADTs" and

implementations in Java.

Reading Assignment: Please read

Section 13.1

for additional de�nitions and terminology

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 19 / 19


	Introduction
	Representations
	Adjacency-Matrices
	Adjacency-Lists

	Generalizations
	Directed Graphs
	Weighted Graphs

	References

