Outline

Computer Science 331 @ Introduction
Graphs and Their Representations

© Representations
@ Adjacency-Matrices

Mike Jacobson @ Adjacency-Lists

Department of Computer Science e Generalizations
University of Calgary .
@ Directed Graphs

Lecture #28 @ Weighted Graphs

@ References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 1/19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 2 /19

Introduction Introduction

Undirected Graphs DEE

An undirected graph G = (V, E) consists of
@ a finite, nonempty set V of vertices or “nodes”

@ a set E of edges, where each “edge” is an unordered pair of distinct
elements of V

Also may be written as V(G) and E(G) to indicate association to a
particular graph.

Undirected graphs, and their generalizations, can be used to model

@ communication networks

@ knowledge and data bases G = (V, E) where

o V=1{0,1,2,3,4,56}
o E=1{(0,1),(1,2),(1,3),(2,3),(2,4),(4,6), (5,6)}

Graphs and their algorithms will be studied for the rest of this course.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 3/19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 4 /19

Introduction Introduction

Terminology Operations

The following operations should be supported:
@ Creation: It should be possible to

If u,v € V and u # v then u and v are neighbours (or, “u is adjacent o initialize a graph to be empty (with no vertices or edges),
to v") if (u,v) € E. o add another vertex
o add an edge (between a pair of existing vertices that are not already
If u € V then the degree of u is the number of neighbours of wu. neighbours);
@ Queries: It should be possible to
Note that if |V/| = n then |E| < ('27) - w o ask whether a given pair of vertices are neighbours,

o determine the number of vertices,
o determine the number of edges;

o lterate: It should be possible to iterate over

o the set of vertices in the graph, as well as
o the set of neighbours of any given vertex.

See page 603 in Chapter 13 for a “Graph ADT”

@ The graph G = (V, E) is dense if |E| € Q(n?) (for n=|V])
e The graph G = (V, E) is sparse if |E| is significantly smaller than n?.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 5/19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 6 /19

Representations ~ Adjacency-Matrices Representations ~ Adjacency-Matrices

Adjacency-Matrix Representation Example

G Ag:
. _ _ 0 1 0 0 0 0 O]
Assumption: Vertices are numbered 0,1,...,|V| — 1 in some way. 1011000
_ _ _ _ _ 0101100
The adjacency-matrix representation of G consists of a |V/| x | V| matrix 0110000
AG, Wlth (i,_j)th entry a,‘,j fOFOSI,_]< |V,Where O 0 1 0 0 O 1
0 00 0 0 01
00001 1 0

{1 if (i,j) € E,
ajj = e
0 if(i,j)¢E.

Note: Ag is a symmetric matrix: a;j = a;,; for 0 </, j < |V].

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 7 /19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 8 /19

Representations ~ Adjacency-Matrices Representations =~ Adjacency-Lists

Properties Adjacency-List Representation

Properties of This Representation:

e simple

@ reasonably space-efficient if G is dense The adjacency-list representation of G = (V/, E) consists
@ not space_efﬁcient if Gis Sparse! of an array AdJG of |V| “StS, one for each vertex in V.

@ possible to add an edge or determine whether two vertices are

For each u € V, the adjacency list Adjs(u) contains (pointers to) all the

neighbours in constant time .
vertices v € V such that (u,v) € E.

e iterating over the set of neighbours of a vertex requires O(|V|)
operations, even if G is sparse

... a good choice if G is small or dense, not if large and sparse

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 9 /19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 10 / 19

Representations = Adjacency-Lists Representations =~ Adjacency-Lists

Example Properties

Properties of This Representation:

G: Adjg: @ space-efficient if G is sparse
@ not really space-efficient if G is (extremely) dense!
* @ checking whether a pair of vertices are neighbours requires more than
i g K I e N I s R V4 constant time — number of operations is linear in the degree of one
2 {1 [{3 [of the inputs, in the worst case
s 42 @ adding an edge also requires this cost (if error checking is to be
s s included)
s 1] @ iterating over the set of neighbours of a vertex is efficient: Number of
o [+ F+{5]] operations used is linear in the degree of the input vertex

. a good choice if G is large and sparse; not if small or dense

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 11 /19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 12 /19

Generalizations Directed Graphs Generalizations Directed Graphs

Directed Graphs DEE
G: Adjacency-Matrix:
A directed graph (“digraph”) G = (V/, E) consists of O 0’
@ a finite, nonempty set V of vertices or nodes, and
@ a set E of ordered pairs of elements of E (that are not necessarily e

distinct)

Directed graphs can be represented using adjacency-matrices or e‘e’

adjacency-lists, in much the same way that undirected graphs can.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 13 / 19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 14 / 19

Generalizations Directed Graphs Generalizations Weighted Graphs
DEE Weighted Graphs
G: Adjacency-List:
o o’ A weighted graph is an undirected or directed graph G = (V, E) for which
each edge has an associated weight.
e The weights are typically given an associated weight function
e w:E—-R

Weighted graphs can be represented using adjacency-matrices or adjacency
lists as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 15 / 19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 16 / 19

Generalizations =~ Weighted Graphs Generalizations =~ Weighted Graphs

Example Example

G: Adjacency-Matrix: G: Adjacency-List:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 17 / 19 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 18 / 19

References

References

Graphs in Java

@ Java’'s standard libraries do not currently include implementations of
graphs or graph algorithms

o Chapter 12 of the text includes various “Graph ADTs” and
implementations in Java.

Reading Assignment: Please read
Section 13.1

for additional definitions and terminology

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 19 / 19

	Introduction
	Representations
	Adjacency-Matrices
	Adjacency-Lists

	Generalizations
	Directed Graphs
	Weighted Graphs

	References

