
Computer Science 331

Operations on Binary Heaps

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #25

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 1 / 32

Outline

1 Overview

2 Insertion

Description

Step 1: Adding the Element

Step 2: Restoring the Max-Heap Property

3 Deletion

Description

Step 1: Removing the Largest Element

Step 2: Restoring the Max-Heap Property

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 2 / 32

Overview

Overview

To be considered today:

Insertion into a Max-Heap

Deletion of the Largest Element from a Max-Heap

Like red-black tree operations each has two stages:

a) A simple change determines the output and the set of values stored,

but destroys the Max-Heap property

b) A sequence of local adjustments restores the Max-Heap property.

The corresponding Min-Heap operations replace the comparisons used and

are otherwise the same.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 3 / 32

Insertion Description

Insertion: Speci�cation of Problem

Signature: void insert(T[] A, T key)

Precondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) key is a value of type T

c) heap-size(A) < A.length

Postcondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) The given key has been added to the multiset of values stored in this

Max-Heap, which has otherwise been unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 4 / 32



Insertion Description

Insertion: Speci�cation of Problem

Precondition 2:

a) A is an array representing a Max-Heap that contains values of type T

b) key is a value of type T

c) heap-size(A) = A.length

Postcondition 2:

a) A FullHeapException is thrown

b) A (and the Max-Heap it represents) has not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 5 / 32

Insertion Step 1: Adding the Element

Step 1: Adding the Element

Pseudocode:

void insert(T[] A, T key)

if heap-size(A) < A.length then

A[heap-size(A)] = key
heap-size(A) = heap-size(A)+ 1

The rest of this operation will be described in Step 2

else

throw new FullHeapException
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 6 / 32

Insertion Step 1: Adding the Element

Example: Insertion, Step 1

Suppose that A is as follows.

16

12 14

2 4

0 1 2 3 4 5 6 7

16 12 14 2 4 1 9 3

A.length = 8; heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 7 / 32

Insertion Step 1: Adding the Element

Example: Insertion, Step 1

Step 1 of the insertion of the key 20 produces the following:

16

2

12 14

4 20

0 1 2 3 4 5 6 7

16 12 14 2 4 20 9 3

A.length = 8; heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 8 / 32



Insertion Step 2: Restoring the Max-Heap Property

Step 2: Restoring the Max-Heap Property

Situation After Step 1:

The given key has been added to the Max-Heap and stored in some

position j in A

If this value is at the root (because the heap was empty, before this)

or is less than or equal to the value at its parent, then we have a

produced a Max-Heap

Otherwise we will move the value closer to the root until the

Max-Heap property is restored

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 9 / 32

Insertion Step 2: Restoring the Max-Heap Property

Step 2: Restoring the Max-Heap Property

Pseudocode for Step 2:

j = heap-size(A)� 1

while j > 0 and A[j] > A[parent(j)] do

tmp = A[j]
A[j] = A[parent(j)]
A[parent(j)] = tmp
j = parent(j)

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 10 / 32

Insertion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

Consider the following heap, which was produced using our ongoing

example at the end of Step 1:

16

2

12 14

4 20

0 1 2 3 4 5 6 7

16 12 14 2 4 20 9 3

A.length = 8; heap-size(A) = 6

Initial value of j: 5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 11 / 32

Insertion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

A and j are as follows after the �rst execution of the body of the loop in

Step 2:

16

2

12

4

20

14

0 1 2 3 4 5 6 7

16 12 20 2 4 14 9 3

A.length = 8; heap-size(A) = 6

Current value of j: 2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 12 / 32



Insertion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

A and j are as follows after the second execution of the body of this loop:

2

12

4 14

20

16

0 1 2 3 4 5 6 7

20 12 16 2 4 14 9 3

A.length = 8; heap-size(A) = 6

Current value of j: 0

The loop terminates at this point.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 13 / 32

Insertion Step 2: Restoring the Max-Heap Property

Step 2: Partial Correctness

The following properties are satis�ed at the beginning of each execution of

the body of the loop:

a) The �rst heap-size(A) entries of A are the multiset obtained from

the original contents of the heap by inserting a copy of the given key

b) j is an integer such that 0 < j < heap-size(A)

c) For every integer h such that 1 � h < heap-size(A), if h 6= j then

A[h] � A[parent(h)]

d) A[j] > A[parent(j)]

e) If j > 0 and left(j) < heap-size(A) then

A[left(j)] � A[parent(j)]

f) If j > 0 and right(j) < heap-size(A) then

A[right(j)] � A[parent(j)]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 14 / 32

Insertion Step 2: Restoring the Max-Heap Property

Step 2: Partial Correctness

The following properties are satis�ed at the end of every execution of the

body of this loop.

j is an integer such that 0 � j < heap-size(A)

Properties (a), (c), (e) and (f) of the loop invariant are satis�ed.

On termination of this loop,

Either j = 0, or j is an integer such that 0 < j < heap-size(A)
and A[j] � A[parent(j)]

Properties (a), (c), (e) and (f) of the loop invariant are satis�ed.

Exercises:

1 Sketch proofs of the above claims.

2 Use these to prove the partial correctness of this algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 15 / 32

Insertion Step 2: Restoring the Max-Heap Property

Step 2: Termination and E�ciency

Loop Variant: f (A;j) = blog2(j+ 1)c

Justi�cation:

integer value function

decreases by 1 after each iteration, because j is replaced with

(j � 1)=2

f (A; j) = 0 implies that j = 0; in which case the loop terminates

Application of Loop Variant:

inital value, and thus upper bound on the number of iterations, is

f (A;heap-size(A)� 1) = blog2 heap-size(A)c

loop body and all other steps require constant time

worst-case running time is in O(log heap-size(A)):

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 16 / 32



Insertion Step 2: Restoring the Max-Heap Property

Step 2: Termination and E�ciency

Suppose that the given key is greater than the largest value stored in the

Max-Heap represented by A when this operation is performed.

Lower Bound for Number of Steps Executed:


(log heap-size(A))

Conclusion: The worst-case cost of this operation is

�(log heap-size(A))

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 17 / 32

Deletion Description

DeleteMax: Speci�cation of a Problem

Signature: T deleteMax(T[] A)

Preconditon 1:

a) A is an array representing a Max-Heap that contains values of type T

b) heap-size(A) > 0

Postcondition 1:

a) A is an array representing a Max-Heap that contains values of type T

b) The value returned, max, is the largest value that was stored in this

Max-Heap immediately before this operation

c) A copy of max has been removed from the multiset of values stored in

this Max-Heap, which has otherwise been unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 18 / 32

Deletion Description

DeleteMax: Speci�cation of Problem

Precondition 2:

a) A is an array representing a Max-Heap that contains values of type T

b) heap-size(A) = 0

Postcondition 2:

a) An EmptyHeapException is thrown

b) A (and the Max-Heap it represents) has not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 19 / 32

Deletion Step 1: Removing the Largest Element

Deletion, Step 1

Pseudocode:

T deleteMax(T[] A)

if heap-size(A) > 0 then

max = A[0]
A[0] = A[heap-size(A)-1]
heap-size(A) = heap-size(A)� 1

The rest of this operation will be described in Step 2

return max
else

throw new EmptyHeapException
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 20 / 32



Deletion Step 1: Removing the Largest Element

Example: Deletion, Step 1

Suppose that A is as follows.

6 3

1

8

7

9

4

2

0 1 2 3 4 5 6 7

9 8 4 7 6 2 3 1

A.length = 8; heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 21 / 32

Deletion Step 1: Removing the Largest Element

Example: Deletion, Step 1

After Step 1, max=9 and A is as follows:

6 3

8

7

4

2

1
0 1 2 3 4 5 6 7

1 8 4 7 6 2 3 1

A.length = 8; heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 22 / 32

Deletion Step 2: Restoring the Max-Heap Property

Step 2: Restoring the Max-Heap Property

Situation After Step 1:

A copy of the maximum element has been removed from the multiset

stored in the heap, as required

If the heap is still nonempty then a value has been moved from the

deleted node to the root

If the heap now has size at most one, or its size is at least two and

the value at the root is larger than the value(s) at its children, then

we have produced a Max-Heap

Otherwise we should move the value at the root down in the heap by

repeatedly exchanging it with the largest value at a child, until the

Max-Heap property has been restored

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 23 / 32

Deletion Step 2: Restoring the Max-Heap Property

Step 2: Restoring the Max-Heap Property

j = 0

while j < heap-size(A) do

` = left(j); r = right(j); largest = j
if ` < heap-size(A) and A[`] > A[largest] then

largest = `
end if

if r < heap-size(A) and A[r] > A[largest] then

largest = r
end if

if largest 6= j then

tmp = A[j]; A[j] = A[largest]; A[largest] = tmp;
j = largest

else

j = heap-size(A)
end if

end while
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 24 / 32



Deletion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

Consider the following heap, which is produced using our ongoing example

at the end of Step 1:

6 3

8

7

4

2

1
0 1 2 3 4 5 6 7

1 8 4 7 6 2 3 1

A.length = 8; heap-size(A) = 7

Initial value of j: 0

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 25 / 32

Deletion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

A and j are as follows after the �rst execution of the body of this loop:

6 37

4

2

8

1

0 1 2 3 4 5 6 7

8 1 4 7 6 2 3 1

A.length = 8; heap-size(A) = 7

Current value of j: 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 26 / 32

Deletion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

A and j are as follows after the second execution of the body of this loop:

6 3

4

2

8

7

1

0 1 2 3 4 5 6 7

8 7 4 1 6 2 3 1

A.length = 8; heap-size(A) = 7

Current value of j: 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 27 / 32

Deletion Step 2: Restoring the Max-Heap Property

Example: Execution of Step 2

A and j are as follows after the third execution of the body of this loop:

6 3

4

2

8

7

1

0 1 2 3 4 5 6 7

8 7 4 1 6 2 3 1

A.length = 8; heap-size(A) = 7

Current value of j: 7

The loop terminates at this point.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 28 / 32



Deletion Step 2: Restoring the Max-Heap Property

Step 2: Partial Correctness

The following properties are satis�ed at the beginning of each execution of

the body of the loop:

a) The �rst heap-size(A) entries of A are the multiset obtained from

the original contents of the heap by deleting a copy of its largest value

b) j is an integer such that 0 � j < heap-size(A)

c) For every integer h such that 0 � h < heap-size(A) and h 6= j,
if left(h) < heap-size(A) then A[left(h)] � A[h]
if right(h) < heap-size(A) then A[right(h)] � A[h]

d) If j > 0 and left(j) < heap-size(A) then

A[left(j)] � A[parent(j)]

e) If j > 0 and right(j) < heap-size(A) then

A[right(j)] � A[parent(j)]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 29 / 32

Deletion Step 2: Restoring the Max-Heap Property

Step 2: Partial Correctness

The following properties are satis�ed at the end of every execution of the

body of this loop.

j is an integer such that 0 � j � heap-size(A)

Properties (a), (c), (d) and (e) of the loop invariant are satis�ed

On termination of this loop,

j = heap-size(A)

Properties (a), (c), (d) and (e) of the loop invariant are satis�ed

Exercises:

1 Sketch proofs of the above claims.

2 Use these to prove the partial correctness of this algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 30 / 32

Deletion Step 2: Restoring the Max-Heap Property

Step 2: Termination and E�ciency

Loop Variant:

f (A;j) =

(
1 + height(j) if 0 � j < heap-size(A)

0 if j = heap-size(A)

Justi�cation:

integer valued, decreases by 1 after each iteration (j replaced by root

of a sub-heap)

f (A; j) = 0 implies that j = heap-size(A) (loop terminates)

Application of Loop Variant:

inital value, and thus upper bound on the number of iterations, is

f (A; 0) = 1 + height(0) = blog heap-size(A)c

loop body and all other steps require constant time

worst-case running time is in O(log heap-size(A)):

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 31 / 32

Deletion Step 2: Restoring the Max-Heap Property

Step 2: Termination and E�ciency

Suppose that the value moved to the root, at the end of step 1, is the

smallest value in the heap.

Lower Bound for Number of Steps Executed:


(log heap-size(A))

Conclusion: The worst-case cost of this operation is

�(log heap-size(A))

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 32 / 32


	Overview
	Insertion
	Description
	Step 1: Adding the Element
	Step 2: Restoring the Max-Heap Property

	Deletion
	Description
	Step 1: Removing the Largest Element
	Step 2: Restoring the Max-Heap Property


