Mike Jacobson (University of Calgary)

Computer Science 331
Hash Tables with Chaining

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #19

Computer Science 331

Introduction

Common Situation

Lecture #19

We wish to use a dictionary (or mapping), under the following

circumstances:

@ The “universe” of possible values for keys is extremely large.

@ We have a much smaller bound on the (maximal) size of the
dictionary we will need to support.

@ The only dictionary operations we need are

e initialization of an empty dictionary,

o searches for items in the dictionary,

e insertions of new items into the dictionary,
o deletions of items from the dictionary.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #19

1/ 26

3/ 26

Outline

© Introduction
© Hash Tables with Chaining

© Cost Analysis

© Details

@ Concepts from Probability Theory
@ Average Length

@ Unsuccessful Search

@ Successful Search

© A Variation

@ References

Mike Jacobson (University of Calgary) Computer Science 331

Introduction

What is a Hash Table?

A hash table is a generalization of an ordinary array.

Features:

Lecture #19

2/26

@ Array size is generally chosen to be comparable to (perhaps, a small

multiple of) our bound on dictionary size

o Worst-case performance is generally poor

@ However, the average-case performance is extremely good — better
than that of the other implementations of a dictionary we have

considered!

Mike Jacobson (University of Calgary) Computer Science 331

Lecture #19

4/26

Introduction Introduction

Notation and Definitions General Difficulty: Collisions

More terminology:

U: Universe: The set of ible values for k
niver € Set of possible valles Tor Keys o A key k hashes to an array location ¢ if h(k) = ¢.

m: Table Size: The size of the array used to build @ A collision occurs if two keys k; and kp (used in the dictionary) hash
a hash table to the same location, that is,
T: The array that is used. h(k1) = h(ka) .

h: Hash Function: A function

Note: Collisions are unavoidable if the size of the dictionary is greater

h:U 0,1.... -1
—-{0,1,...,m—1} than the table size.

used to map keys to array locations
There are several different kinds of hash tables that use different ways to
Idea: try to store element x with key k in location T[h(k)]. deal with collisions.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 5/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 6 /26

Hash Tables with Chaining Hash Tables with Chaining

Collision Resolution with Chaining Example

_ U: {1,2,...,200}
In a hash table with chaining: 0
e we put all the keys (used in the dictionary) that hash to the same 1 125 m: 8
location £ into a linked list. 2 1+7] T: As shown to the left.
@ For 0 <4< m, T[{] is a pointer/reference to the head of the linked 3 h: Function such that
list for location /.
o Abuse of Notation: Sometimes T[¢] will be used as the name for the il h:{1,2,...,200} = {0, 1,.... 7},
above linked list (instead of a pointer to it). Z] eg. h(k) = k mod 8 for k € U.
-

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 7/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 8 /26

Hash Tables with Chaining Cost Analysis

Dictionary Operations Worst-Case Analysis

Cost of an operation involving a key k is essentially the cost the same
Search for an item with key k; operation involving k, using the linked list T[h(k)].

@ Search for k in the linked list T[h(k)]. Problem:

Insertion of an item [with key k;
@ Search for k in the linked list T[h(k)].

@ If the search was unsuccessful, insert | onto the front of this linked
list.

[=>]
'

e R Ty

Deletion of an item with key k;
o Perform a deletion of an item with key k from the linked list T[h(k)].

[~]

It is possible for al/l dictionary items to be part of this linked list!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 9/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 10 / 26

Cost Analysis Cost Analysis

Average Case Analysis Simple Uniform Hashing

_ _ o _ Assumption: Simple Uniform Hashing:
We will consider the average cost of dictionary operations when a hash

table is used to represent a dictionary with n elements. @ Each key is hashed to location £ with the same probability, —, for

0<i< m.

The average cost of these operations depends on @ Furthermore, each key is hashed to a location independently of where

@ the likelihood of each kind of operation, and any other key is hashed to.

the shape of the hash table.
¢ the shape of the hash table That is: If ky, ko, . .., ky are the keys in the dictionary then

The shape of the hash table only depends on the Jocations to which keys h(ky) =¢; and h(ky) =¢> and --- and h(k,) =4,
are hashed — not on the values of the keys, themselves.
with probability (1/m)", for each choice of locations ¢1,05,...,£,.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 11 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 12 / 26

Cost Analysis Cost Analysis

Load Factor Average Case Analysis: Summary

Load Factor of T: The average) of the lengths of the linked lists (or Expected Numbers of Comparisons Required:

“chains”) TI[O], T[1],..., T[m —1].
chains”) T[0], T{1],.., Tlm — 1] Unsuccessful Search for a key k :

@ Assumption: No additional assumptions required.
A = n/m (hash table has m locations, dictionary has n elements). o Expected Cost:

Proof.
Suppose T[i] has length n; for 0 < i < m.
® Then A= L(ng+ ny +--- + nm_1) (by definition).

@ However, since each key is hashed to exactly one location, and there
are n keys, np+n +---+ nm—1 = n,s0 A =n/m.

Successful Search:
@ Assumption: Search for each key with probability %
@ Expected Cost:

Insertion of New Element:
]

V.

Deletion of Existing Element:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 13 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 14 / 26

Details ~ Concepts from Probability Theory Details ~ Concepts from Probability Theory

Concepts from Probability Theory Application to Hash Tables

Sample Space: Finite set S of events in which we are interested.

If we are interested in analyzing the shape of the hash table including keys

Probability Distribution: Function Pr: S — R such that ki, ks, ..., kp then the sample space S includes n-tuples
0<Pr(s)<lforalls€S and > Pr(s)=1. (01,60, ...,00)
scS

of locations of these keys (in the hash table).
Random Variable: A real valued function of S. That is, a function

X:5—=R. The “event” (¢1,42,...,£,) occurs if
Expected Value of a Random Variable: The expected value of a h(ki) =¢1 and h(ka) =£> and---and h(ky) = £n.
random variable X is
E[X] = Z Pr(s) - X(s) . One random variable of interest: nj, the length of T[]
seS

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 15 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 16 / 26

Details ~ Concepts from Probability Theory Details ~ Concepts from Probability Theory

More About Random Variables Linearity of Expectation

Suppose that a random variable X can only have values 0,1,2,... t.

If a random variable X is a sum of t other random variables,
Notation: For each integer i, write Pr(X =) = Z Pr(s).

seS X=X1+Xo+ -+ X,
X(s)=i

then

If the only possible values for X are 0,1,2,...,t then E[X] = E[Xy + Xo + -+ + X{]
= E[X1] + E[Xo] + - + E[X] .

EX]=Y i PrX=1).
i=0

Application: We can find the expected value of X by finding the expected

values of each of Xi, X,..., X; and then adding these together.
Exercise.] I

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 17 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 18 / 26

Details =~ Average Length Details Unsuccessful Search

Computing the Average Length Another Way Expected Cost of an Unsuccessful Search

Consider the random variable n; (length of list T[/]):

o ni=X;1+ Xio+...,+X;, where Suppose that:

@ ki,ko,..., k, are keys in the dictionary, and
)1 ifh(k) =i e we perform an unsuccessful search for a key k.
Yo i h(k) £,
If we do not include comparisons to the null pointer, then the number of
and ki, ko,..., kn are the keys in the dictionary. comparisons for an unsuccessful search for k is
@ Since X;; € {0,1}, E[X;j] = Pr(Xij = 1) = 1/m by the Simple
Uniform Hashing assumption. X1+ Xo+ -+ Xy

@ Linearity of Expectation can be used to show that where

X {1 if h(k) = h(k;)

E[n] = E ix,-,j = i E[Xi ;] = 2. 0 if h(k) # h(ki)
j=1 j=1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 19 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 20 / 26

Details Unsuccessful Search Details Successful Search

Expected Cost of an Unsuccessful Search Expected Cost of a Successful Search for k;

Suppose keys were introduced in order

The Uniform Simple Hashing assumption can be used to show that
ki, koy ..., Kn.

A
EXil =& Consider a successful search for k;.

no matter what value h(k) has.
Note: k; appears before any of

Linearity of Expectation can be used to show that the expected number of

el ki, k... ki1
comparisons Is

E[X] + E[Xo] -+ E[X,] = 2 = A, that are in the same linked list, and after any of
kit1, kito, .- kn

that are in the same linked list.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 21 /26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 22 /26

Details Successful Search Details Successful Search

Expected Cost of a Successful Search for k; Expected Cost of a Successful Search

Number of comparisons to search for k; is, therefore,

Yi=14+ X1+ Xizo+ -+ X,

Additional Assumption: We search for k; with probability %
where

X: — 1 if h(kj) = h(ki) One can show that the expected cost of a successful search is
7|0 if h(ky) # h(ki) 1
LEMVA] +E[Ya] + - +E[Ya]) =1+ 5 — 2,
Under the Uniform Simple Hashing assumption, E[X;] = # _ _
under these assumptions, as claimed.

By Linearity of Expectations,

E[Y]=1+(n—i)-()=1+"2"

m

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 23 /26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 24 [/ 26

A Variation References

A Variation References

Suppose that the universe U is ordered, so that we can also ask whether

ki < ko for any two keys ky and ko.
o Textbook, Section 9.2 — description of hash tables as a data

In this case we could maintain the keys in each of our lists in sorted order. structure for implementing Java's Map interfaces (recall that Map is
similar to Dictionary).

@ Introduction to Algorithms, Section 11.2 — additional information
about hash tables with chaining (including much of the material in
these notes)

@ Worst case costs for operations are unchanged.

o Expected cost for a successful search using the usual assumptions is
also unchanged

@ However, the expected cost for an unsuccessful search is somewhat
reduced — because we can use the list ordering to end an
unsuccessful search a bit earlier.

o Introduction to Algorithms, Appendix C — more information about
useful concepts from probability and statistics

@ The overhead to maintain sorted order is insignificant, so this
optimization is worthwhile.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 25 /26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #19 26 [/ 26

	Introduction
	Hash Tables with Chaining
	Cost Analysis
	Details
	Concepts from Probability Theory
	Average Length
	Unsuccessful Search
	Successful Search

	A Variation
	References

