
Computer Science 331

Data Structures, Abstract Data Types, and Their Implementations

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 1 / 25

Outline

1 Overview

2 Data Types and ADTs

Data Types as Classes

New Classes From Old

ADTs as Interfaces

3 Java Collections Framework

Introduction to the Java Collections Framework

Notes on the Use of Standard Libraries

Expectations for This Course

4 A Few Odds and Ends

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 2 / 25

Overview

What This Lecture is About

Signi�cant concepts de�ned in the �rst lecture:

Data Type: de�ned by

Data values and their representation

Operations de�ned on the data values and the implementation of these

operations

Abstract Data Type: In essence, a \speci�cation of requirements"

that is satis�ed by a data type

Data Structure: Provides a representation of the data values speci�ed

by an ADT

Together with algorithms for an ADT's operations, this provides an

implementation-independent description of a data type

Goal for Today: Discussion of support for these in Java

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 3 / 25

Overview

Information Hiding

Assumption:

Everyone in this class has already been introduced to the basic

principles of object-oriented development...

...although this introduction has, sometimes, been quite brief.

One Very Important Idea: Information Hiding

Allows various implementation decisions to be made gradually, in a

\piecemeal" fashion

All external access to the information maintained as part of data type

must be made using the data type's operations

Consequence: \The rest of the system" does not need to know how

the data type is represented! ...and this data type, and \the rest of the

system," can be developed independently

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 4 / 25



Data Types and ADTs Data Types as Classes

Example Data Type: A Simple Counter

Consider a \simple counter" used to keep track of information about the

current time, or progress toward some goal

Data Values:

limit: A positive integer | one more than the maximum value this

counter can represent. We will assume (or require) that this value is

small enough to be represented using Java's int primitive data type

| so that

0 � limit � 2; 147; 483; 647

value: The current value being represented, i.e., an integer

between 0 and limit� 1 (inclusive)

Representation:

One might simply represent these by a pair of variables with names

limit and value, respectively

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 5 / 25

Data Types and ADTs Data Types as Classes

Example Data Type: A Simple Counter

Operations Might Include...

Creation: Set limit to be a given integer value (throwing an

IllegalArgumentException instead, if the supplied value is

negative or zero) and set value to be zero

Access: A method should be available to report the limit

Access: A method should be available to report the value

Modi�cation: An advanceValue method should increment value,

throwing a LimitReachedException if this would cause value to

be equal to limit and setting the value of value back to 0 in this

case

Once implementations of these methods are supplied, the description of

this \data type" would be complete.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 6 / 25

Data Types and ADTs Data Types as Classes

Implementation as a Class

A class can be provided to implement this data type.

Implementation Details:

All instance variables (eg. forw limit and value) should be private

| only be accessible through the class's methods

Operations that create a new element of this data type that a

program will use (that is, create a new object in this class) should be

implemented as constructor methods...

Operations that report information about some element of this data

type (ie, about an object in this class) should not modify it as well...

and should be implemented as accessor methods....

Operations that change | that is, modify some object should

implemented as modi�er or \mutator" methods....

...and, yes: With rare exceptions, each public method in a class

should be one of the above three types!.... but only one

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 7 / 25

Data Types and ADTs Data Types as Classes

Class Invariants

At this point, information about our class that is available to the rest of

the world includes

the names we have given to the public methods we have provided for

use, as well as

signatures for these methods.

In general this fails to include | or clearly convey | info about the

acceptable ranges of values, and required relationships, for values

represented by private instance variables for our class.

Eg: For our \Counter" example, it is not necessarily clear that...

limit is an integer (whose value will not be changed) that is positive

and and can be represented using Java's int data type

value is a nonnegative integer that is less than limit.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 8 / 25



Data Types and ADTs Data Types as Classes

Class Invariants

De�nition: A class invariant is an assertion about the information that is

maintained by each object in the class.

Properties:

The class invariant must be satis�ed whenever the use of a

constructor method results in the creation of a new object.

Thus the class invariant should be implied by every constructor's

postcondition(s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 9 / 25

Data Types and ADTs Data Types as Classes

Class Invariants

Properties, Continued:

The class invariant may be assumed to hold immediately before the

execution of any other public (accessor or mutator) method begins. It

should therefore be part of every such method's precondition(s).

The class invariant does not necessarily hold while the execution of a

mutator method is in progress.

However, the class invariant must hold, once again, when every public

method terminates. It should therefore be part of every accessor and

mutator method's postcondition(s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 10 / 25

Data Types and ADTs Data Types as Classes

Class Invariants

Class invariant for our \simple counter:"

a) limit is a positive integer that can be represented exactly using

Java's int data type

b) value is an integer whose value is between 0 and limit� 1, inclusive

A SimpleCounter.java �le implementing this class | and including

this class invariant | will be provided for students to examine and use.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 11 / 25

Data Types and ADTs New Classes From Old

Composition

It is possible that the objects in a class have an instance (or even multiple

instances of) another class as a component(s)

Example: Consider a TimeOfDay class whose objects can be used to

represent times during a day, using a 24-hour clock, measured in hours,

minutes, and seconds.

Each instance of (ie, object in) the TimeOfDay class has three instances

of our \simple counter" class as components:

seconds: a simple counter with limit equal to 60

minutes: a simple counter with limit equal to 60

hours: a simple counter with limit equal to 24

Note: In this kind of relationship, the \components" do not have any kind

of independent identity, themselves: They are only accessed indirectly,

through the larger class's operations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 12 / 25



Data Types and ADTs New Classes From Old

Aggregation

This is another kind of \has a" relationship between objects.

The chief di�erence between aggregation and composition is that, when

\aggregation" is used, the \component" object does have an independent

identity | and can be accessed directly by other classes and methods

Example: This relationship is used to de�ne a linked list of objects of the

same class | each object in the list (except the �nal one) has a next

object that follows it.

Note: We will use aggregation quite often in this course, because it is

needed to implement recursively de�ned (and \hierarchical") data types.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 13 / 25

Data Types and ADTs New Classes From Old

Inheritance

Another important relationship between classes is an \is a" relationship:

One class extends another, \inheriting" all the attributes of the original

Example: the Exception Class Hierarchy

Classes Error and Exception both extend the class Throwable

| so that an Error object \is a" Throwable object, too

Classes RunTimeException and IOException both extend the

Exception class | so that a RunTimeException object \is an"

Exception object, too.

Note: It follows from this that a RunTimeException object \is a"

Throwable object, too.

Note: In CPSC 331 we will use libraries of classes that have been

developed using inheritance. You will not need to use inheritance to de�ne

classes when solving problems in this course (except possibly for a few very

limited examples).
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 14 / 25

Data Types and ADTs New Classes From Old

Abstract Classes

An abstract class is a special kind of class that includes declarations of one

or more methods without providing implementations of these methods.

These methods are called abstract methods.

Such a class cannot have any objects of \its own."

However, other regular (concrete) classes can (and generally do) extend an

abstract class, providing implementations of all the abstract methods

whose declarations have been inherited | and these concrete classes can

have objects.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 15 / 25

Data Types and ADTs ADTs as Interfaces

Interfaces

In Java, an interface is : : :

an extreme case of an \abstract class:" An interface can de�ne

constants (i.e., \class variables" | declared as both static and

final) and abstract methods, but it cannot include any instance

variables or implemented methods

used to represent an abstract data type

CPSC 331 students will be expected to write their own interfaces, and use

existing interfaces, to solve problems in this course.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 16 / 25



Data Types and ADTs ADTs as Interfaces

Interfaces: Additional Notes

Other abstract and concrete classes that \implement" the interface

must provide the operations speci�ed by the interface with exactly the

same syntax

It is customary, and useful, to include comments that specify the

\semantics" of the operations (giving their requirements in more

detail) as part of an implementation.

We will also frequently provide an \interface invariant" (which must

be implied by the class invariant of any class that implements this

interface).

However, these details are not checked by Java!

It is possible for a class to implement more than one interface; this is

Java's (only) support for multiple inheritance

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 17 / 25

Java Collections Framework Introduction to the Java Collections Framework

Collections Frameworks

A collections framework is a software architecture consisting of the

following:

A hierarchy of interfaces that de�ne various kinds of collections and

specify how they are related

A set of abstract classes that provide partial implementations of the

interfaces and serve as the foundation for constructing concrete

classes

A set of concrete classes based on di�erent underlying data structures

that o�er di�erent runtime characteristics

A set of algorithms that work with these

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 18 / 25

Java Collections Framework Introduction to the Java Collections Framework

Java Collections Framework

The Java Collections Framework provides implementations for a number of

common collections, including lists, maps, sets and vectors. The version

provided with Java 5 included the following hierarchy of interfaces.

Of course, we are now using Java 6 | and various details have changed!

Additional information will be provided later on.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 19 / 25

Java Collections Framework Notes on the Use of Standard Libraries

Ways To Use Standard Libraries Like the JCF

One Approach: Build Everything From Scratch : : :

In other words, don't use the libraries at all!

Advantage: You don't have to depend on someone else's

implementation of something that you use

Disadvantage: Development is more time-consuming, expensive, and,

potentially, error-prone

Analogy: Building a house by fabricating everything that you need

instead of purchasing standard materials o�-the-shelf

Older data structures textbooks focus almost entirely on this approach,

because useful \standard libraries" were not available when they were

written!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 20 / 25



Java Collections Framework Notes on the Use of Standard Libraries

Ways To Use Standard Libraries Like the JCF

A Second Approach: Use Libraries in a Limited Way

In particular, understand what the libraries provide and make use of

this in a straightforward way : : :

: : : without trying to provide additional interfaces, abstract classes,

and concrete classes that extend the library

Advantage: The current project is likely completed more e�ciently

and reliably than using the �rst approach, provided that the library is

already well-suited to it

Another Advantage: Design and coding is (still) reasonably

straightforward

Disadvantage: You lose the ability to customize and extend the library

in a way that simpli�es development of your own future projects

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 21 / 25

Java Collections Framework Notes on the Use of Standard Libraries

Ways To Use Standard Libraries Like the JCF

A Third Approach: Use and Extend These Libraries

Build components that will likely be of use in future projects

Implement and test these in a way that facilitates reuse: : : for

example, planning for the likelihood that inheritance hierarchies will

be extended in ways you do not know about

Potential Advantage: The library will gradually become more suitable

for your application area

Potential Advantage: Future projects will be completed more

e�ciently and reliably than would otherwise be possible

Disadvantage: Implementation and testing (of the components to be

added to the library) can be considerably more complicated than

would otherwise be the case!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 22 / 25

Java Collections Framework Expectations for This Course

Expectations for This Course

You will be able to \build from scratch," and you will occasionally be

asked to do so on assignments and tests, because

this is a very e�ective way to learn about the data structures that are

being discussed, and

You will be able to make (limited) use of standard libraries without

necessarily being able to extend them, because

You should get into the habit of using these libraries instead of

\re-inventing the wheel" as soon as possible

You will discover (very quickly) that you simply do not have time to

solve the problems and design the software that you need to if you try

to build everything from scratch

Extending libraries might be discussed brie
y, but not in detail.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 23 / 25

A Few Odds and Ends

An Array of What?

If you want to, you can...

1 Maintain a sorted array of integers, or

2 Maintain a sorted array of reals, or

3 Maintain a sorted array of strings, or...

Essentially the same algorithm can be used to sort the array in each case,

and essentially the same algorithm can be used to search in the sorted

array, too.

Java therefore provides (and allows us to develop) generic types as well as

generic methods.

We will need to know more about these in use the Java Collections

Framework e�ectively... and it turns out to be better to use an

ArrayList instead of a array here...

... but that's enough for today!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 24 / 25



A Few Odds and Ends

Reading Assignment

Please read the following review material. You may ask questions about

this material in tutorials.

Sections 1.1 and 1.2

Chapter 2 . While we did not follow the same order of topics, you

should see that all the material in this chapter of the text has now

been covered.

Lectures will continue with material that is discussed in Chapter 3 | which

introduces both generic programming and the Collections Framework.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #8 25 / 25


	Overview
	Data Types and ADTs
	Data Types as Classes
	New Classes From Old
	ADTs as Interfaces

	Java Collections Framework
	Introduction to the Java Collections Framework
	Notes on the Use of Standard Libraries
	Expectations for This Course

	A Few Odds and Ends

