
Computer Science 331

Solutions to Selected Tutorial #4 Questions

Question 1

1 for i from 0 to n-2 do
2 j := n-1
3 while j > i do
4 if A[j] < A[j-1] then
5 temp := A[j]
6 A[j] := A[j-1]
7 A[j-1] := temp
8 end if
9 j := j-1

10 end do
11 end do

a. Upper bound for the worst-case running time of this algorithm

To find the worst-case run-time of this algorithm, we first determine the worst-case run-time of
the inner-most loop and work outwards. Consider the body of the inner-most while loop first. As
in class, we will approximate a run time function by counting the number of operations executed
during the course of the algorithm. Since we are finding an upper bound for the worst-case, we
assume that test condition in the if statement evaluates to ’true’ and all the statements will be
executed during every iteration.

Cost

4 if A[j] < A[j-1] then 2 ops (sub. and comparison)
5 temp := A[j] 1 op (assignment)
6 A[j] := A[j-1] 2 ops (sub. and assignment)
7 A[j-1] := temp 2 ops (sub. and assignment)
8 end if

1



9 j := j-1 2 ops (sub. and assignment)

The loop variant for this while loop isf(i, j) = j− i. Substituting in the initial value ofj = n− 1
tells us that the number of iterations of this loop is at mostn−i−1. The number of operations done
in the body of this while loop per execution is at most9. In addition to the(n− i− 1) executions
of the loop body, the test conditionj > i is executed(n− i) times. The worst-case run-time of the
code segment between3− 10 (the inner while loop) is thus

T1(i) = (n− i) + 9(n− i− 1)
= 10(n− i)− 9 .

Notice that the cost of this loop for theith iteration is expressed as a function of the outer loop
indexi.

The loop variant for the outer-most for-loop isf(i, n) = n − 1 − i. Substituting in the initial
value ofi = 0 tells us that the number of iterations of this loop is at mostn − 1. The number of
operations done in the body of this for-loop per execution is at mostT1(i)+2 where one additional
operation comes from the initialization of variablej (line 2) and an additional operation comes
from incrementingi. In addition to the(n − 1) executions of the loop body, the test condition
(i ≤ n − 2) is executedn times, and each evaluation of the test costs2 operations in total (one
subtraction and one comparison). Before the program enters the for-loop,i is initialized to0, which
counts as1 operation. Thus, the worst-case run-time is equal to the initialization cost (1) plus the
cost for evaluating the tests (2n) plus the cost of executing the loop body wheni = 0, 2, . . . , n− 2
and we obtain

T (n) = 1 + 2n + (T1(0) + 2) + (T1(1) + 2) + · · ·+ (T1(n− 2) + 2)

= 1 + 2n +
n−2∑
i=0

(T1(i) + 2) .

As we are looking for an upper bound on the worst-case running time, we note that fori =
0, . . . , n− 2, takingi = 0 results in the largest value forT1(i), so we have

T1(i) ≤ T1(0) = 10(n− 0)− 9 = 10n− 9 .

Thus, we have that

T (n) ≤ 1 + 2n +
n−2∑
i=0

(T1(0) + 2)

= 1 + 2n +
n−2∑
i=0

(10n− 7)

= 1 + 2n + (n− 1)(10n− 7)

= 10n2 − 15n + 8

2



is an upper bound on the worst-case run time of bubble sort.

Alternative Solution: For this example, it is possible to derive a more precise operation count by
evaluating the sum as opposed to using an upper bound on its terms. In particular, we have

T (n) = 1 + 2n +
n−2∑
i=0

(T1(i) + 2)

= 1 + 2n +
n−2∑
i=0

(10(n− i)− 9 + 2)

= 1 + 2n + 10

(
n−2∑
i=0

(n− i)

)
−

(
n−2∑
i=0

7

)

= 1 + 2n + 10

(
n−2∑
i=0

n

)
− 10

(
n−2∑
i=0

i

)
−

(
n−2∑
i=0

7

)

= 1 + 2n + (10(n− 1)n)− 10
(

(n− 1)(n− 2)
2

)
− 7(n− 1)

= 5n2 − 2 .

Notice that, for this example, both methods yield functions that are quadratic in the input sizen.
Looking ahead, we see that, using asymptotic notation, we can say that the worst-case running time
of bubble sort in inO(n2). In addition, using the fact that the second expression forT (n) (obtained
by evaluating the sum as opposed to approximating it), serves as an upper and lower bound on the
worst-case run time, we can conclude that the worst-case run time of bubble sort is inΘ(n2).

b. Lower bound for the best-case running time of this algorithm

To find a lower bound for the best-case run-time of this algorithm, we first determine the best-case
run-time of the inner-most loop and work outwards. In the best case the test condition in the if
statement will evaluate to “false” and the number of operations done in the body of the while loop
per execution will be4. Thus, following the reasoning from the previous question, the number of
steps required to execute the inner while-loop in the best case is

T1(i) = (n− i) + 4(n− i− 1)
= 5(n− i)− 4 .

Notice that the behaviour of the outer for-loop is the same in the worst and best cases, so the total
cost of bubble sort is

T (n) = 1 + 2n + (T1(0) + 2) + (T1(1) + 2) + · · ·+ (T1(n− 2) + 2)

= 1 + 2n +
n−2∑
i=0

(T1(i) + 2) .

3



As we are looking for a lower bound on the best-case running time, we note that fori = 0, . . . , n−
2, takingi = n− 2 results in the smallest value forT1(i), so we have

T1(i) ≥ T1(n− 2) = 5(n− (n− 2))− 4 = 6 .

Thus, we have that

T (n) ≥ 1 + 2n +
n−2∑
i=0

(T1(n− 2) + 2)

= 1 + 2n +
n−2∑
i=0

8

= 1 + 2n + 8(n− 1)
= 10n− 7

is a lower bound on the best-case run time of bubble sort. Using asymptotic notation, we can state
that the best-case run time of bubble sort is inΩ(n).

However, it is important to note that it is possible to obtain a tighter lower bound on the best case
run time for this example. If we evaluate the sum exactly as opposed to using a lower bound on the
terms in the sum, we obtain

T (n) = 1 + 2n +
n−2∑
i=0

(T1(i) + 2)

= 1 + 2n +
n−2∑
i=0

(5(n− i)− 2)

= 1 + 2n + 5

(
n−2∑
i=0

n

)
− 5

(
n−2∑
i=0

i

)
−

(
n−2∑
i=0

2

)

= 1 + 2n + 5(n− 1)n− 5
(n− 1)(n− 2)

2
− 2(n− 1)

=
5
2
n2 − 5

2
n− 2 .

Thus, we can also conclude, using asymptotic notation, that the best-case run time of bubble sort is
in Ω(n2). Note that this does not contradict the previous claim that the best case run time is inΩ(n)
— both statements are correct, but theΩ(n2) result is more precise. In fact, given these results, we
can also conclude that the best-case run time of bubble sort is inω(n) and inΘ(n2). Combining
with the answer to the previous question, we have that the best and worst-case run times of this
version of bubble sort are inΘ(n2), i.e., the best case doesnotoffer a significant improvement over
the worst-case.

4



Note: It is possible to modify this version of bubble sort in such a way that the best caseis in Θ(n).
As an exercise, think about how this can be done and what characterizes input arrays that give rise
to this best case performance.

c: Average case analysis

Given that the worst and best case running times are quadratic functions ofn, we conclude that the
average case, which must lie between the best and worst cases, is given by a quadratic function of
n.

d: Putting assertions

The most helpful assertions to assist in proving bubble sort partially correct are loop invariants cor-
responding to each of the loops and a post-condition for the inner while-loop. This post-condition,
as well as the loop invariantsI(k) (corresponding to the outer for-loop) andI(t), corresponding to
the inner while-loop are included below.

for i from 0 to n-2 do
// I(k) : i = k; A[l] <= A[l+1] for 0<=l<i-1; 0<=i<n
j := n-1
while j > i do

// I(t): j=n-1-t; A[j] <= A[m] for j<m<n; i<=j<n
if A[j] < A[j-1] then

temp := A[j]
A[j] := A[j-1]
A[j-1] := temp

end if
j := j-1

end do
// Post-condition: A[i] <= A[m] for i<m<n

end do
// Post-condition: A[i] <= A[i+1] for 0 <= i < n

To verify that the second loop invariant (corresponding to the inner loop) is valid, you would need
to show (exercise) that:

• I(t) is true whent = 0 (i.e., before the first execution of the loop body). With a while-
loop, you should imagine the loop invariant being placed immediately before the test for
termination.

• If I(t) is true and the loop iterates again, thenI(t + 1) is true.

5



• If I(t) is true and the loop terminates, the the loop’s post-condition is satisfied.

Similarly, to verify that the first loop invariant is valid, you would need to show (exercise) that:

• I(k) is true whenk = 0 (i.e., before the first execution of the for-loop body). With a for-
loop, you should imagine the loop invariant being placed immediately afteri is initialized
but before the test for termination.

• If I(k) is true and the loop iterates again, thenI(k + 1) is true. Notice that you need to
assume that the inner loop’s post-condition is always satisfied in order to prove this, but
proving the partial correctness of the inner loop, by demonstrating thatI(t) is a valid loop
invariant as above, assures that this is in fact true.

• If I(k) is true and the loop terminates, then the post condition (in this case, that the elements
of A are sorted) is satisfied.

Thus, a proof, as outlined above, that these loop invariants are correct would constitute a proof of
partial correctness of bubble sort.

6


