Computer Science 331

Quicksort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #28

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 1/24

Introduction

Introduction

Q Introduction

e Partitioning
@ Deterministic Partitioning
@ Randomized Partitioning

Q Quicksort

@ Deterministic Quicksort
@ Randomized Quicksort

Q Analysis

e References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 2/24

Introduction

Quicksort:

@ A recursive “Divide and Conquer” sorting algorithm
@ A simple deterministic version uses
e O(n?) operations to sort an array of size n in the worst case
e O(nlogn) operations on average, assuming all relative orderings of
the (distinct) input are equally likely
@ The expected number of operations used by a randomized version
is in O(nlogn) for any input array of size n
@ Reference: Introduction to Algorithms, Chapter 7. This textbook
discusses a different version of this algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 3/24

© Choose an element x and reorder the array as follows:

@ X is in the correct spot if the array was sorted
e elements < x are to the left of x in the array
e elements > x are to the right of x in the array

© Recursively sort subarray of elements to the left of x
© Recursively sort subarray of elements to the right of x

Step 1 is the key to this method being efficient. Issues:
°
°

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 424

Partitioning

Partitioning

A procedure that is called repeatedly by the main Quicksort algorithm
(Step 1 in the previous description)

Objective: Reorder the values in a given portion of the array so that

@ all values less than or equal to some “pivot element” are at the
beginning, and

@ all values greater than this pivot element are at the end.
Return the location of the pivot element as output

Number of operations used is linear in the length of the part of the
array that is being processed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 5/24

Partitioning Deterministic Partitioning

Pseudocode

Partitioning Deterministic Partitioning

Deterministic Partitioning

Idea:

@ Pivot element used is the last element in the part of the array
being processed. Other versions of this algorithm use the first
element instead.

@ Sweep from left to right over the array, exchanging elements as
needed, so that values less than or equal to the pivot element are
all located before values that are greater than the pivot element, in
the part of the array that has been processed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 6/24

Partitioning Deterministic Partitioning

DPartition (A, p,r)
{Assumption: 0 < p <r < length(A)}
x = Alr]
i=p—-1j=p
while j <r do
if A[j] < x then

i=i+1
Swap: tmp = A[i]; Ali] = A[j]; A[j] =tmp
end if
j=j+1
end while
Swap: tmp = Afi + 1]; Ali + 1] = A[r]; A[r] =tmp
return i+1

Example

Consider the execution of DPartition (A, 3, 10) for A as follows:

3 4 5 6 7 8 9 10
T2[6[4]1]7]3]0]5 -

Using x = A[10] = 5 as the pivot. Initially i = 2,j = 3.
j=3:
3 45 6 7 8 9 10

S e N I A

3 45 6 7 8 9 10

e I A

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 7124

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #28 8/24

Partitioning Deterministic Partitioning

Example (cont.)

Partitioning Deterministic Partitioning

Example (cont.)

3 45 6 7 8 9 10

I I A
]=6:
o 3456 7 8 9 10
== T T TITO1-
|j=7:
3 4 5 6 7 8 9 10

I I A

Mike Jacobson (University of Calgary)

Partitioning Deterministic Partitioning

Computer Science 331 Lecture #28 9/24

3 45 6 7 8 9 10

I I A
]=9:
o 3456 7 8 9 10
IR AT I I %
]=10:
3 4 5 6 7 8 9 10

e I I

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 10/ 24

Partitioning Deterministic Partitioning

Partial Correctness: Loop Invariant

Suppose p and r are integers such that 0 < p <r < length(A).

If kK > 0 and the for-loop is executed at least k times, then the following
conditions are satisfied at the beginning of the k" execution of the
loop body:
Q@jczZp<j<r—-1,andj=p+k.
Q@icZandp-1<i<j—1.
© The following hold for each integer ¢ such thatp < ¢ <r:
o Ifp </¢<ithenA[] <x.
o Ifi+1<¢<j—1thenA[] > x.
o If ¢ =r then A[(] = x.

© Entries of A are reordered but otherwise unchanged.

Note: At the end of this execution of the loop body, eitherj =i + 1, or
j >i4+1andA[j] > x as well.

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #28 11/24

Mike Jacobson (University of Calgary)

Partial Correctness: Application of Loop Invariant

Once again, suppose that p and r are integers such that
0 < p <r < length(A). Let x be the value that was stored at location r
of A before the program was called.

If the program halts then the following conditions are satisfied on
termination (that is, when the return statement is executed):
QOp-1<i<r-1
© The following relationships hold for each integer ¢ such that
p<{i<r:
o Ifp </ <ithenA[] < x.
o If ¢ =i+ 1then Al/] =X.
o Ifi+2< ¢ <rthen A[{] > Xx.

© Entries of A are reordered but otherwise unchanged.

Computer Science 331 Lecture #28 12/ 24

Partitioning Deterministic Partitioning

Termination and Efficiency

Loop Variant: r —j
Justification:
Application:

@ The initial value of the loop variantisr — p
Therefore the loop body is executed exactly r — p times.

@ Each execution of the loop body requires (at most) a constant
number of operations.

Therefore the cost to execute the loop is in O(r — p).
@ Since the rest of the program only uses a constant number of

operations, it is clear that the program terminates and that it uses
O(r — p) operations in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 13/24

Partitioning Randomized Partitioning

Partitioning Randomized Partitioning

Randomized Partitioning

Idea: Choose the pivot element randomly from the set of values in the
part of the array to be processed. Then proceed as before.

RPartition (A, p, r)
{Assumption: 0 < p <r < length(A)}
Choose i randomly and uniformly from the set of integers between p
and r (inclusive).
Exchange: tmp = A[i]; A[i] = A[r]; A[r] =tmp
return DPartition(A, p, r)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 14/ 24

Quicksort Deterministic Quicksort

Randomized Partitioning: Analysis

Suppose p and r are integers such that 0 < p <r < length(A) and that
RPartition is called with inputs A, p and r.
@ This algorithm terminates using O(r — p) operations.
@ Let g be the value that is returned on termination. Then the
following conditions hold on termination.
ep=sqgcsr.
o If¢ e Zandp < ¢ < qthenA[] <A[q].
o IfteZandqg < ¢<rthenA[] > Alq].
If the entries on A are distinct then q = i with probabilityr —p + 1
for each integer i between p and r (inclusive).

@ Entries of A are reordered but otherwise unchanged.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 15/24

Deterministic Quicksort

Idea: Partition the array, then recursively sort the pieces before and
after the pivot element.

Call quickSort (A, 0, length(A) — 1) to sort A:

quickSort (A, p,)
if p <r then
q = DPartition (A, p,r)
quickSort (A, p,q—1)
quickSort (A, q+1,r)
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 16/ 24

Quicksort Randomized Quicksort Analysis

Randomized Quicksort Worst-Case Analysis of Deterministic Quicksort

Idea: Same as deterministic Quicksort, except that randomized Let T (n) be the number of steps used by QuickSort to sort an array of
partitioning is used. length n in the worst case. Then

Call RQuicksort (A, 0, length(A) — 1) to sort A: Co ifn<1,

.) = cin+ max (T(k)+T(n—1-k)) ifn>2.
RQuicksort (A, p, 1) 0<k<n—1)
if p <r then e , .

q = RPartition(A, p, r) Justification: Base case requires constant # of steps. General case:
RQuicksort (A, p, q — 1) °
RQuicksort (A, g+ 1,r) °
end if
Application: This recurrence can be used to prove that T(n) € O(n?)
using induction on k.
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 17 /24 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 18/24

Analysis Analysis

Worst-Case Analysis of Deterministic Quicksort Average-Case Analysis of Deterministic Quicksort

Consider an application of this algorithm when the input is an array A
with n distinct entries

Consider a binary search tree T storing the same values, with
If Deterministic Quicksort is applied to an array of length n whose e the “partition” element at the root
entries are already sorted then this algorithm uses Q(n?) steps.

@ the left subtree formed by considering the application of the
algorithm to the left subarray

Method of Proof: Induction on n, once again. @ the right subtree formed by considering the application of the
algorithm to the right subarray
Conclusion: Deterministic Quicksort uses ©(n?) to sort an array of

length n in the worst case. Useful Property: The number of steps used by the algorithm is at most
cn(height(T) + 1)

for some positive constant ¢

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 19/24 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 20/24

Analysis

Average-Case Analysis of Deterministic Quicksort

Assumption for Analysis: Entries of A are distinct and all n! relative
orderings of these inputs are equally likely

Useful Property: The corresponding binary search trees T are
generated with the probability distribution discussed in the “Average
Case Analysis of Binary Search Trees.”

Bounds on expected height of trees from those notes can now be
applied.

Conclusion: The expected cost of Quicksort is in O(nlogn) if the
above assumption for analysis is valid.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 21/24

An Annoying Problem

An Annoying Problem: Both versions of Quicksort, given above, use
©(n?) operations to “sort” an array of length n if the array contains n
copies of the same value!

The different version of Quicksort found in the textbook has the same
problem!

The tutorial exercises on quickSort discuss a modification to partition
that addresses this problem.

Mike Jacobson (University of Calgary)

Analysis of Randomized Quicksort

References
References

The previous analysis can be modified to establish that the “worst-case
expected cost” of Randomized Quicksort to sort an array with distinct
entries isin O(nlogn) as well.

Note: it is possible to obtain a worst-case running time of ©(nlogn)

@ careful (but deterministic) selection of the pivot (see Introduction
to Algorithms, Chapter 9.3)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 22124

References:
@ Cormen, Leiserson, Rivest and Stein
Introduction to Algorithms, Second Edition

Chapter 7 includes more details, including a complete analysis of
the version of Quicksort presented here

@ Textbook

Section 10.9 presents a Quicksort algorithm and analysis. Two
different “partition” algorithms with the same asymptotic cost are
presented.

Computer Science 331 Lecture #28 23/24

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #28 24124

	Introduction
	Partitioning
	Deterministic Partitioning
	Randomized Partitioning

	Quicksort
	Deterministic Quicksort
	Randomized Quicksort

	Analysis
	References

