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Priority Queues

Priority Queues

Definition: A priority queue is a data structure for maintaining a
multiset S of elements, each with an associated value called a key.

A max-priority queue supports the following operations:

Insert(S, key ): Insert element with key key into S

Maximum(S): Report the largest key in S without changing S

Extract-Max(S): Remove and return the element of S with largest
key

Increase-Key(S, i , key ): Increase the key of the value indicated
by i to key

Reference: textbook Section 8.5 (offer, peek/element, remove/poll, no
Increase-Key)
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Priority Queues

Priority Queues

Priority Queues in Java:
Class “PriorityQueue” in the Java Collections framework
implements a “min-priority queue.”

implements the “Queue” interface, so calls to “Insert,” “Minimum,”
and “Extract-Min” are implemented using calls to operations “add,”
“element,” and “remove,” respectively.
There is no operation corresponding to “Increase-Key.”

Applications:

Scheduling: keys represent “priorities” used to determine order in
which requests should be served
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Priority Queues

Implementation

Binary Heaps are often used to implement priority queues.

Example: One representation of a max-priority queue including keys
S = {2, 4, 8, 12, 14, 16} is as follows:

16

12 14

2 4 8

0 1 2 3 4 5 6 7
16 12 14 2 4 8 9 3

length(A) = 8; heap-size(A) = 6
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Increase-Key

Increase-Key

Precondition:

A: Max-heap representing a max-priority queue S,
containing elements of some ordered type

i : Integer such that 0 ≤ i < heap-size(A)

key : A value with the same type as elements of S

Let ` be the value originally stored at location i of A.

Postcondition: If key ≥ ` then A represents the max-priority queue
obtained by removing ` from S and inserting key . A is unchanged,
otherwise.

Exception:

SmallValueException, thrown if key < `

IndexOutofBoundsException, thrown if i < 0 or i ≥ heap-size(A)
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Increase-Key

Idea and Pseudocode

Idea: “Bubble” the new key up until it is in place.

Increase-Key (A, i , key)
if ((i < 0) or (i ≥ heap-size(A))) then

Throw IndexOutOfBoundsException
else if key < A[i] then

Throw SmallValueException
else

A[i] = key ; j = i
while (j > 0) and (A[parent(j)] < A[j]) do

Swap:
tmp = A[j]; A[j] = A[parent(j)]; A[parent(j)] = tmp

i = parent(j)
end while

end if
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Increase-Key

Example

Consider the application of Increase-Key (A, 4, 20) for A as follows.

16

12 14

2 4 8

0 1 2 3 4 5 6 7
16 12 14 2 4 8

heap-size(A) = 6
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Increase-Key

Example: First Step

A is as follows after the initial replacement of A[i].

16

12 14

2 820

0 1 2 3 4 5 6 7
16 12 14 2 20 8

heap-size(A) = 6
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Increase-Key

Example: First Execution of Loop Body

A is as follows after the first execution of the loop body.

0 1 2 3 4 5 6 7
heap-size(A) =
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Increase-Key

Example: Second Execution of Loop Body

A is as follows after the second execution of the loop body.

0 1 2 3 4 5 6 7
heap-size(A) =

i = 0 : loop and function terminate
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Increase-Key

Partial Correctness: Loop Invariant

Let ` be the value stored at location i of the array A.

If the loop body is executed k or more times then the following set I(k)
of properties is satisfied immediately after the k th execution of the loop
body.

A represents the multiset obtained from the original multiset S by
removing ` and by inserting key

0 ≤ j < heap-size(A) and j ≤ bi/2kc
For every integer h such that 1 ≤ h < heap-size(A), if h 6= j then
A[h] ≤ A[parent(h)]

If j > 0 and left(j) < heap-size(A) then A[left(j)] ≤ A[parent(j)]

If j > 0 and right(j) < heap-size(A) then A[right(j)] ≤ A[parent(j)]
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Increase-Key

Partial Correctness: Application of Loop Invariant

Exercises:
1 Prove that this really is a loop invariant for the loop in this program

(using induction on k ).
2 Use the loop invariant to establish partial correctness of this

program.
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Increase-Key

Termination and Efficiency

Loop Variant: f (n, i , j) = blog2(j + 1)c

Justification:

Application of Loop Variant:
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Insertion

Insert

Precondition:
A: Max-heap representing a max-priority queue S,

containing elements from some ordered type

key : A value with the same type as the elements of S

Postcondition: A is a max-heap representing a max-priority queue
S ∪ {key}.

Exception: QueueFullException, thrown if there is no room left in A
(so A is unchanged)
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Insertion

Idea and Pseudocode

Idea:

Add the new key to the next available leaf on the last level.

Use Increase-Key to reorganize the priority queue.

Insert (A, key)
if heap-size(A) < length(A) then

heap-size(A) = heap-size(A) + 1
A[heap-size(A)− 1] = −∞
Increase-Key (A, heap-size(A)− 1, key )

else
Throw QueueFullException

end if
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Insertion

Example

Consider the application of Insert(A, 20) for A as follows.

16

12 14

2 4 8

0 1 2 3 4 5 6 7
16 12 14 2 4 8

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 17 / 21

Insertion

Example: First Step

A is as follows before the call to Increase-Key .

0 1 2 3 4 5 6 7
heap-size(A) =
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Insertion

Example: Completion

Increase-Key (A, 6, 20):

0 1 2 3 4 5 6 7
heap-size(A) =
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Maximum and Extract-Max

Maximum and Extract-Max

Idea: The largest element of a max-heap is always located at the root.

Maximum (A)
if heap-size(A) > 0 then

return A[0]
else

Throw EmptyQueueException
end if

The “Extract-Max” operation is the same as the “Delete-Max” operation
used as part of Heap Sort.

The operation can be implemented in the same way.
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Other Implementations

Binomial and Fibonacci Heaps

Introduction to Algorithms, Chapter 19 and 20

Better than binary heaps if Union operation must be supported:

creates a new heap consisting of all nodes in two input heaps

Function Binary Heap Binomial Heap Fib. Heap
(worst-case) (worst-case) (amortized)

Insert Θ(log n) O(log n) Θ(1)
Maximum Θ(1) O(log n) Θ(1)

Extract-Max Θ(log n) Θ(log n) O(log n)
Increase-Key Θ(log n) Θ(log n) Θ(1)

Union Θ(n) O(log n) Θ(1)
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