
Computer Science 331
Classical Sorting Algorithms

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #22

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 1 / 33

Outline

1 Introduction

2 Selection Sort
Description
Analysis

3 Insertion Sort
Description
Analysis

4 Bubble Sort
Description
Analysis

5 Comparisons

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 2 / 33

Introduction

The “Sorting Problem”

Precondition:

A: Array of length n, for some integer n ≥ 1,
storing objects of some ordered type

Postcondition:

A: Elements have been permuted (reordered)
but not replaced, in such a way that

A[i] ≤ A[i + 1] for 0 ≤ i < n − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 3 / 33

Introduction

Three Classical Algorithms

Discussed today: three “classical” sorting algorithms

Reasonably simple

Work well on small arrays

Each can be used to sort an array of size n using Θ(n2) operations
(comparisons and exchanges of elements) in the worst case

None is a very good choice to sort large arrays: Asymptotically
faster algorithms exist!

Reference: Textbook, Section 10.1-10.5

Section 10.1 — using Java’s sorting functions

Section 10.5 — comparison of classical sorting algorithms

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 4 / 33



Selection Sort Description

Selection Sort

Idea:

Repeatedly find “i th-smallest” element and exchange it with the
element in location A[i]

Result: After i th exchange,

A[0], A[1], . . . , A[i − 1]

are the i smallest elements in the entire array, in sorted order

Reference: Textbook, Section 10.2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 5 / 33

Selection Sort Description

Pseudocode

Selection Sort
for i from 0 to n − 2 do

min = i
for j from i + 1 to n − 1 do

if A[j] < A[min] then
min = j

end if
end for
tmp = A[i]; A[i] = A[min]; A[min] = tmp {Swap}

end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 6 / 33

Selection Sort Description

Example

A: 2 6 3 1 4

Idea: find smallest element in A[i], . . . , A[4] for each i from 0 to n − 1

i = 0

set min = 3 (A[3] = 1 is minimum of A[0], . . . , A[4])

swap A[0] and A[3] (A[0] sorted)

A: 1 6 3 2 4

i = 1

set min = 3 (A[3] = 2 is minimum of A[1], . . . , A[4])

swap A[1] and A[3] (A[0], A[1] sorted)

A: 1 2 3 6 4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 7 / 33

Selection Sort Description

Example (cont.)

i = 2

set min = 2 (A[2] = 3 is minimum of A[2], . . . , A[4])

swap A[2] and A[2] (A[0], A[1], A[2] sorted)

A: 1 6 3 2 4

i = 3

set min = 4 (A[4] = 4 is minimum of A[3], A[4])

swap A[3] and A[4] (A[0], A[1], A[2], A[3] sorted)

A: 1 2 3 4 6

Finished! A[0], . . . , A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 8 / 33



Selection Sort Analysis

Inner Loop: Semantics

The inner loop is a for loop, which does the same thing as the
following code (which includes a while loop):

j = i + 1
while j ≤ n − 1 do

if (A[j] < A[min]) then
min = j

end if
j = j + 1

end while

We will supply a “loop invariant” and “loop variant” for the above while
loop in order to analyze the behaviour of the for loop we used to
generate it

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 9 / 33

Selection Sort Analysis

Inner Loop: Loop Invariant

Loop Invariant: After k executions of the inner loop body,

n, i , min ∈ N; n is the size of A
First subarray (with size i) is sorted with smallest elements:

0 ≤ i ≤ n − 2
A[h] ≤ A[h + 1] for 0 ≤ h ≤ i − 2
if i > 0 then A[i − 1] ≤ A[h] for i ≤ h ≤ n − 1

Searching for the next-smallest element:
i + 1 ≤ j ≤ n and j = i + 1 + k
i ≤ min < j
A[min] ≤ A[h] for i ≤ h < j

Entries of A have been reordered; otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 10 / 33

Selection Sort Analysis

Inner Loop: Interpretation of the Loop Invariant

all > A[i − 1]︷ ︸︸ ︷
A: i − 1 i j − 1 j︸ ︷︷ ︸

sorted
︸ ︷︷ ︸

A[min] smallest

After k executions of the loop body, the following hold:

A[0], . . . , A[i − 1] are sorted

A[`] ≥ A[i − 1] for i ≤ ` < n

i ≤ min < j and A[min] ≤ A[h] for i ≤ h < j

entries of A have been reordered, otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 11 / 33

Selection Sort Analysis

Application of the Loop Invariant

Loop invariant and failure of the loop test ensures that j = n
immediately after the final execution of the inner loop body

This, and the loop invariant, ensures that i ≤ min < n and that
A[min] ≤ A[`] for all ` such that i ≤ ` < n

The loop invariant also ensures that A[min] ≥ A[h] for all h such that
0 ≤ h < i

In other words, A[min] is the value that should be moved into
position A[i]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 12 / 33



Selection Sort Analysis

Inner Loop: Loop Variant and Application

Loop Variant: f (n, i , j) = n − j

decreasing integer function

when f (n, i , j) = 0 we have j = n and the loop terminates

Application:

initial value is j = i + 1

worst-case number of iterations is
f (n, i , i + 1) = n − (i + 1) = n − 1− i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 13 / 33

Selection Sort Analysis

Outer Loop: Semantics

The outer loop is a for loop whose index variable i has values from 0
to n − 2, inclusive

This does the same thing as a sequence of statements including

an initialization statement, i = 0

a while loop with test “i ≤ n − 2” whose body consists of the body
of the for loop, together with a final statement i = i + 1

We will provide a loop invariant and a loop variant for this while loop in
order to analyze the given for loop

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 14 / 33

Selection Sort Analysis

Outer Loop: Loop Invariant and Loop Variant

Loop Invariant: After k executions of the outer loop body,

0 ≤ i ≤ n − 1 and i = k

A[h] ≤ A[h + 1] for 0 ≤ h < i

if k > 0, A[i − 1] ≤ A[h] for i ≤ h < n

Entries of A have been reordered; otherwise unchanged

Thus: A[0], . . . , A[i − 1] are sorted and are the i smallest elements in A

Loop Variant: f (n, i) = n − 1− i

decreasing integer function

when f (n, i) = 0 we have i = n − 1 and the loop terminates

worst-case number of iterations is f (n, 0) = n − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 15 / 33

Selection Sort Analysis

Analysis of Selection Sort

Worst-case: Θ(n2) steps

inner loop iterates n − 1− i times (constant steps per iteration)

outer loop iterates n − 1 times

total number of steps is at most

c0 +
n−2∑
i=0

c1(n − 1− i) = c0 + c1(n − 1)2 − c1

n−2∑
i=0

i ∈ Θ(n2)

Conclusion: Worst-case running time is in O(n2).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 16 / 33



Selection Sort Analysis

Analysis of Selection Sort, Concluded

Best-Case: Also in Ω(n2) :

Both loops are for loops and a positive number of steps is used on
each execution of the inner loop body

Total number of steps is therefore at least

ĉ0 +
n−2∑
i=0

ĉ1(n − 1− i) ∈ Ω(n2)

Conclusion: Every application of this algorithm to sort an array of
length n uses Θ(n2) steps

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 17 / 33

Insertion Sort Description

Insertion Sort

Idea:

Sort progressively larger subarrays

n − 1 stages, for i = 1, 2, . . . , n − 1

At the end of the i th stage
Entries originally in locations

A[0], A[1], . . . , A[i]

have been reordered and are now sorted
Entries in locations

A[i + 1], A[i + 2], . . . , A[n − 1]

have not yet been examined or moved

Reference: Textbook, Section 10.4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 18 / 33

Insertion Sort Description

Pseudocode

Insertion Sort
for i from 1 to n − 1 do

j = i
while ((j > 0) and (A[j] < A[j − 1])) do

tmp = A[j]; A[j] = A[j − 1]; A[j − 1] = tmp {Swap}
j = j − 1

end while
end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 19 / 33

Insertion Sort Description

Example

A: 2 6 3 1 4

Idea: insert A[i] in the correct position in A[0], . . . , A[i − 1]

initially, i = 0 and A[0] = 2 is sorted

i = 1

no swaps

A[0], A[1] sorted

A: 2 6 3 1 4

i = 2

swap A[2] & A[1]

A[0], A[1], A[2] sorted

A: 2 3 6 1 4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 20 / 33



Insertion Sort Description

Example (cont.)

i = 3

swap A[3] & A[2], swap A[2] & A[1], swap A[1] & A[0]

A[0], A[1], A[2], A[3] sorted

A: 1 2 3 6 4

i = 4

swap A[4] & A[3]

A[0], A[1], A[2], A[3], A[4] sorted

A: 1 2 3 4 6

Finished! A[0], . . . , A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 21 / 33

Insertion Sort Analysis

Inner Loop: Loop Invariant

Consider some execution of the outer loop body, and the use of the
inner loop as part of it.

Loop Invariant: After k executions of the inner loop body,

i , j , n ∈ N; n is the size of A

1 ≤ i < n and 0 ≤ j ≤ i

j = i − k

A[h] ≤ A[h + 1] for 0 ≤ h ≤ j − 2
and for j ≤ h < i

if j > 0 and j < i then A[j − 1] ≤ A[j + 1]

Entries of A have been reordered; otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 22 / 33

Insertion Sort Analysis

Inner Loop: Interpretation of Loop Invariant

A: j − 1 j j + 1 i︸ ︷︷ ︸
sorted

︸ ︷︷ ︸
sorted

After k executions of the loop body, the following hold:

A[0], . . . , A[j − 1] are sorted

A[j], . . . , A[i] are sorted

A[j − 1] ≤ A[j + 1], so that A[0], . . . , A[i] are sorted if A[j − 1] ≤ A[j]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 23 / 33

Insertion Sort Analysis

Inner Loop: Loop Variant and Application

Loop Variant: f (n, i , j) = j

decreasing integer function

when f (n, i , j) = 0 we have j = 0 and the loop terminates

Application:

initial value is i

worst-case number of iterations is i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 24 / 33



Insertion Sort Analysis

Outer Loop: Semantics

Once again, the outer for loop can be rewritten as a while loop for
analysis. Since the inner loop is already a while loop, the new outer
while loop would be as follows.

i = 1
while i ≤ n − 1 do

j = i
Inner loop of original program
i = i + 1

end while

This program will be analyzed in order establish the correctness and
efficiency of the original one.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 25 / 33

Insertion Sort Analysis

Outer Loop

Loop Invariant: After k executions of the outer loop body,

1 ≤ i ≤ n and i = k + 1

A[h] ≤ A[h + 1] for 0 ≤ h < i − 2

Entries of A have been reordered; otherwise unchanged.

Thus, A[0], . . . , A[i − 1] are sorted, for i = k + 1, after k iterations.

after n − 1 iterations, A is sorted

Loop Variant: f (n, i) = n − i

number of iterations is f (n, 1) = n − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 26 / 33

Insertion Sort Analysis

Analysis of Insertion Sort, Concluded

Worst-case: Θ(n2) steps

inner loop iterates i times (constant steps per iteration)

outer loop iterates n − 1 times

total number of steps is

c0 +
n−1∑
i=1

c1i = c0 + c1
(n − 1)(n − 2)

2
∈ Θ(n2)

Conclusion: Worst-case running time is in O(n2).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 27 / 33

Insertion Sort Analysis

Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer n ≥ 1 consider the
operation on this algorithm on an input array A such that

the length of A is n

the entries of A are distinct

A is sorted in decreasing order, instead of increasing order

It is possible to show that the algorithm uses Ω(n2) steps on this input
array.

Conclusion: The worst-case running time is in Θ(n2).

Best-Case: Θ(n) steps are used in the best case.

Proof: Exercise. Consider an array whose entries are already
sorted as part of this.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 28 / 33



Bubble Sort Description

Bubble Sort

Idea:

Similar, in some ways, to “Selection Sort”

Repeatedly sweep from right to left over the unsorted (rightmost)
portion of the array, keeping the smallest element found and
moving it to the left

Result: After the i th stage,

A[0], A[1], . . . , A[i − 1]

are the i smallest elements in the entire array, in sorted order

Reference: Textbook, Section 10.3 (variation of this idea)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 29 / 33

Bubble Sort Description

Pseudocode

Bubble Sort
for i from 0 to n − 2 do

for j from n − 2 down to i do
if A[j] > A[j + 1] then

tmp = A[j]; A[j] = A[j + 1]; A[j + 1] = tmp {Swap}
end if

end for
end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 30 / 33

Bubble Sort Analysis

Analysis of Inner Loop

Exercise!

Rewrite the inner loop as an equivalent while loop (preceded by
an initialization statement)

Try to use your understanding of what the inner loop does to find a
“loop invariant.”

This should include enough information so that it can be proved to
hold (probably using mathematical induction) and so that it can be
used to establish correctness of the outer loop.

Try to find a “loop variant” for the inner loop as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 31 / 33

Bubble Sort Analysis

Analysis of Outer Loop

Begin, as usual, by rewriting this loop as an equivalent while loop
(preceded by an initialization statement)

The loop invariant and loop variant given for the outer loop of the
“Selection Sort” algorithm can be used here, as well.

Proving this is different, since the details of the inner loops of
these two algorithms are quite different.

The application of the loop invariant and loop variant to establish
correctness are then much the same as for the “Selection Sort”
algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 32 / 33



Comparisons

Comparisons

All three algorithms have worst-case complexity Θ(n2)

Selection sort only swaps O(n) elements, even in the worst case.
This is an advantage when exchanges are more expensive than
comparisons.

On the other hand, Insertion sort has the best “best case”
complexity. It also performs well if the input as already partly
sorted.

Bubble sort is generally not used in practice.

Note: Asymptotically faster algorithms exist and will be presented
next. These “asymptotically faster” algorithms are better choices when
the input size is large and worst-case performance is critical.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 33 / 33


	Introduction
	Selection Sort
	Description
	Analysis

	Insertion Sort
	Description
	Analysis

	Bubble Sort
	Description
	Analysis

	Comparisons

