Computer Science 331
Queues

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #11

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 1/26

The Queue ADT

A queue is a collection of objects that can be accessed in “first-in,
first-out” order: The only element that is visible and that can be
removed is the oldest remaining element.

Attributes:
@ size : The number of elements on the queue; size > 0 at all times.

@ front : The first element of the queue. This refers to null, a
special value, if the queue is empty (that is, if size = 0)

@ rear: The position in the queue where the next element is to be
inserted, or a null value when the queue is empty.

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #11 3/26

Outline

o Definition
e Applications

e Implementations
@ Array-Based Implementation (Circular Queues)
@ List-Based Implementation

e Generalizations
@ Double Ended Queues
@ Priority Queues

Q Queues in Java

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 2/26

Definition

Definition of the Queue ADT (cont.)

Operations: (Java interface names: “offer,” “remove,” “poll”)

@ Queue (): Constructor; creates an empty queue

@ enqueue(T element): Inserts an element at the rear of the queue
@ dequeue(): Removes and returns the element at the front
°

peek () : Returns the element at the front of the queue without
removing it (leaving the queue unchanged)

@ size(): Returns the number of elements on the queue
@ isEmpty(): Reports whether the queue is empty

Note: Operations dequeue and peek each have the pre-condition that
the queue is nonempty and thrown an NoSuchElementException
exception if this condition is not satisfied when they are called.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 426

Definition Definition
Implementation Using an Array Implementation Using an Array

Initial Queue Effect of Q.peek ()
h t h t
! ! ! !
Q:[a]b[c[d] e [[[]
Output:

Definition Definition
Implementation Using an Array Variation: Bounded Queues

Effect of Q.dequeue)

h t
! !
JEEN
Output:

Effect of Q.peek)

h t
! !
JEEN
Output:

7126

Effect of Q. enqueue (e) Effect of Q.dequeue)
h t h t
! 1 ! !
e[[T] e [[]
Output: Output:
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 6/26

These queues are created to have a maximum capacity (possibly
user-defined — so that two constructors are needed)

@ If the capacity would be exceeded when a new element is
enqueued then an enqueue operation throws a
FullQueueException exception and leaves the queue unchanged

@ Additional operations included a capacity () operation that
returns the capacity of the queue as well as an isFull () test

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #11

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 8/26

Types of Applications

Scheduling:

@ Examples: Print Queues and File Servers — In each case
requests are served on a first-come first-served basis, so that a
gueue can be used to store the requests

Simulation:

@ Example: Modelling traffic in order to determine optimal traffic
lighting (to maximize car throughput)

@ Discrete Event Simulation is used to provide empirical estimates

@ Queues are used to store information about simulated cars
waiting at an intersection

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 9/26

Implementations Array-Based Implementation (Circular Queues)

Straightforward Array-Based Representation

Doesn’'t work well! Problems:

@ If we try to keep the head element at position O then we must shift
the entire contents of the array over, every time there is a dequeue
operation

@ On the other hand, if we try to keep the rear element at position 0
then we must shift the entire contents of the array over, every time
there is an enqueue operation

Operations are too expensive, either way!

Applications
Checking for Palindromes

Palindrome: Word or phrase whose letters are the same backwards
as forwards.

Examples:

Madam, I'm Adam.
Delia saw | was ailed.

See http://www.palindromelist.com for lots of examples.

Exercise: Design an algorithm that uses both a stack and a queue to
decide whether a string is a palindrome in linear time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 10/ 26

Implementations Array-Based Implementation (Circular Queues)

A “Circular” Array

Solution: Allow both the position of the head and rear element to
move around, as needed.

Q: [d]

[?]

\ head=5, tail=1, size=5

| D[~

d ?1?
0 2 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 11/26

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #11 12/ 26

http://www.palindromelist.com

Implementations Array-Based Implementation (Circular Queues) Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations Example with Queue Operations (cont.)

Initial Queue Q.enqueue(d) Q.dequeue () Q.enqueue(e) Q.dequeue () Q.dequeue ()
h t
| 1
Q:|albfc|[?] Q: Q: Q: Q: Q:
01 2 3 0 1 2 3 0 1 2 3 01 2 3 0 1 2 3 0 1 2 3
head = 0 head = head = head = head = head =
tail = 2 tail = tail = tail = tail = tail =
size = 3 size = size = size = size = size =
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 13/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 14/ 26

Implementations Array-Based Implementation (Circular Queues) Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations (cont.) Implementation of Queue Operations

public class CircularArrayQueue<T> {
private T[] queue;

private int head;
Q.dequeue () Q.dequeue () private int tail;

private int size;

public CircularArrayQueue()

el [[[| el [[[| {
0 1 2 3 0 1 2 3
public boolean isEmpty()
{
head = head =
tail = tail = public T peek() {
size = size = if (isEmpty()) throw new NoSuchElementException;

return queue[head];

3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 15/ 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 16/ 26

Implementations Array-Based Implementation (Circular Queues) Implementations List-Based Implementation

Implementation of Queue Operations (cont.) Implementation Using a Linked List

public T dequeue() { Singly-linked list representation:

if (isEmpty()) throw new NoSuchElementException; @ head points to first element, tail points to last element
T x = queue[head];

return Xx;

by a b c d
public enqueue(T x) {

if O {
T [1 queueNew = (T[]) new Object[2*queue.length];
for (int i=0; i<queue.length-1; ++i)

head tail

queueNew[i] = queue[(head+i) % queue.length]; Operations: _ _
head = 0; tail = queue.length-1; queue = queuelNew; @ dequeue: delete first element of list
i @ enqueue (x): insert at tail of list
else
queue[taill = x; ++size; Why not have the tail point to the first element and the head point to
} the last?
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 17/ 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 18/ 26

Implementations List-Based Implementation Implementations List-Based Implementation

Implementation Using a Linked List, Example Implementation of Queue Operations

public class LinkedListQueue<T> {

Effect of dequeue O Effect of enqueue (x) private class QueueNode<T> { similar to StackNode }
private QueueNode<T> head, tail;
private int size;
Pseudocode: Pseudocode: public LinkedListQueue() {
{
(*] (*]
) public boolean isEmpty() {
()
public T peek() {
if (isEmpty()) throw new NoSuchElementException();
Cost: return head.value;

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 19/ 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 20/ 26

Implementations List-Based Implementation Implementations List-Based Implementation

Implementation of Queue Operations (cont.) Comparison of Array and List-Based Implementations

public void enqueue(T x) { Array-based:
QueueNode<T> newNode = new QueueNode<T>(x,null); @ all operations almost always ©(1)

if (isEmpty()) @ enqueue is ©(n) in the worst case (resizing the array)

else @ good for bounded queues (and stacks) where worst case doesn’t
occur
tail = newNode; ++size;
¥ List-based:
public T dequeue() { @ all operations ©(1) in worst case
if (isEmpty()) throw new NoSuchElementException(); @ extra storage requirement (one reference per item)

T x = head.value; head = head.next;

if (head == null) @ good for large queues (and stacks) without a good upper bound

on size (resizing is expensive)
—--size; return x;
b Choice of implementation to use depends on the application.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 21/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 22126

Generalizations Double Ended Queues Generalizations Double Ended Queues

Double Ended Queue — “Dequeue” Implementations

Circular array implementation — similar to that of a regular queue.
A “double ended queue (dequeue)” allows both operations on both

J @ addFront, addRear cost ©(n) in worst-case (due to resizing the
ends:

array), ©(1) otherwise

Operations: @ all other operations ©(1)

@ addFront (x): Insert item x onto front

@ removeFront (): Remove and report value of front item
@ addRear(x): Append item x onto back
°

A doubly-linked list can also be used:

removeRear (): Remove and report value of rear item

head tail

Operations removeFront and removeRear should throw exceptions if S)
called when the dequeue is empty. @ All operations in time ©(1) (exercise)
@ Without a previous pointer, removeRear is ©(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 23126 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 24126

Generalizations Priority Queues Queues in Java
Priority Queues Queues in Java

Java Collections Framework:

A priority queue associates a priority as well as a value with each

element that is inserted. @ includes a more general “Queue” interface and numerous classes
that implement this

The element with smallest priority is removed, instead of the oldest @ Warning: The term “queue” is used in Java is used to describe a

element, when an element is to be deleted. much larger set of structures than is standard.

Priority Queues will be considered again we discuss algorithms for Queues in the Textbook:

sorting .

@ Chapter 7 of the textbook includes additional details along with
two implementations — one that is an adaption of a List and

Also applicable for data compression - (eg. Huffman encoding). another that is an array-based implementation, built “from scratch”

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 25/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 26/26

	Definition
	Applications
	Implementations
	Array-Based Implementation (Circular Queues)
	List-Based Implementation

	Generalizations
	Double Ended Queues
	Priority Queues

	Queues in Java

