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This paper examines the motivation and foundations of fuzzy sets theory, now some 
20 years old, particularly possible misconceptions about possible operators and rela- 
tions to probability theory. It presents a standard uncertainty logic (SUI.) that subsumes 
standard propositional, fuzzy and probability logics, and shows how many key results 
may be derived within SUL without further constraints. These include resolutions of 
standard paradoxes such as those of the bald man and of the barber, decision rules 
used in pattern recognition and control, the derivation of numeric truth values from 
the axiomatic form of the SUL, and the derivation of operators such as the arithmetic 
mean. The addition of the constraint of truth-functionality to a SUL is shown to give 
fuzzy, or Lukasiewicz infinitely-valued, logic. The addition of the constraint of the 
law of the excluded middle to a SUL is shown to give probability, or modal $5, logic. 
An example is given of the use of the two logics in combination to give a possibility 
vector when modelling sequential behaviour with uncertain observations. 

This paper is based on the banquet address with the same title given at NAFIP-1, 
the First North American Fuzzy Information Processing Group Workshop, held at 
Utah State University, May 1982. 

Introduction 

Time is a fundamental  and fascinating what? It is tempting to say phenomenon,  but 
perhaps  in a Kantian sense it is a noumenon,  something that is prior to reality, or, 
idealistically, imposed by our minds in structuring experience. In the context of the 
title of this presentat ion it suffices to note that t ime presents many unsolved problems 
and its nature is still not understood (Gold, 1967). One of the mysteries of time is 
the asymmetry  between past and future which contrasts with the symmetrical  form 
of most  physical laws-- i t  corresponds to the past somehow having happened and thus 
being fully determined and certain, whereas the future is a vague path through possible 
worlds, indeterminate and uncertain. We do, indeed, think of there being a precise 
past and a fuzzy future. 

In this presentat ion I shall capitalize upon the play on words possible with the title, 
taking as an overall theme the transition that is taking place in science and engineering 
f rom the ex t r emerequ i r emen t  for precision of past scientific paradigms to the balanced 
position of accurately representing the intrinsic imprecision of a possibilistic universe 
in future scientific paradigms. However ,  I shall also return to the modelling of a world 
experienced sequentially through time, and will also seek to rectify some of the 
historical mis-statements  of fuzzy sets theory that prove that the past is not so certain 
as we suppose. 

Origins of fuzzy sets theory 

I r emember  being fascinated 10 years ago by a paper  on A trilogy of errors in the 
history of computing presented at the Joint U .S .A. - Japan  Computing Conference 
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(Metropolis & Worlton,  1972). For major  errors to arise in recording the facts of a 
subject area then only some 25 years old, and for these to be propagated,  and hence 
highly cross-confirmed, in a wide range of textbooks is astonishing. Fuzzy sets theory 
is this year (1982) 20 years old, and already some of what we take to be well established 
truths are suspect. In this presentat ion I will concentrate on some misconceptions 
about  fuzzy sets theory that seem significantly misleading to me. In particular I shall 
examine the links between fuzzy sets theory and probabil i ty theory and show that 
these are closer and richer in significance than is often stated. 

Perhaps the first " e r ro r "  made in our  l i terature references is to assume that Zadeh ' s  
(1965) paper  is the first reference to fuzzy sets. I t  is indeed the first mathematical  
presentation, but the motivation for the concept, and the term fuzzy, predate  this by 
three years (Zadeh, 1962): 

There are some who fee l . . ,  the fundamental inadequacy of the conventional mathematics-- 
the mathematics of precisely-defined points, functions, sets, probability measures, etc.--for 
coping with the analysis of biological systems, and that to deal effectively with such systems, 
we need a radically different kind of mathematics, the mathematics of fuzzy or cloudy 
quantities which are not describable in terms of probability distributions. Indeed the need 
for such mathematics is becoming increasingly apparent even in the realm of inanimate 
systems. 

It places the terminology in its proper  context to note that today we might be at a 
conference of the North American Cloudy Information Processing group, and have a 
journal of Cloudy Sets and Systems. t 

Zadeh ' s  (1962) paper  was entitled From circuit theory to system theory and this is 
a very significant context for motivating the development  of fuzzy sets. In electronic 
circuits and their applications to computing, communicat ions and control, we find the 
apex of modern  scientific achievement  and our greatest  technological triumphs. We 
might also believe circuit theory to be a confirmation of the intrinsic value of the 
precisiation process in the paradigm of science--circuits  do behave with precision and 
do follow the underlying mathematics  with uncanny verac i ty- -we can design in theory 
and then implement  with exactitude. However ,  it would be more correct to say that 
circuits can be made to behave with precis ion--electronics  is our ultimate artefact 
designed to enable us to use our scientific and mathematical  techniques, not working 
because they are right, but made to work as if they are right. It is when we are 
fooled by the success of our paradigm in predicting and controlling our artefacts into 
believing that it is also a tool for predicting and controlling the natural world that 
problems occur. The notions of state, stability, adaptivity, and so on, that had served 
us so well in engineering, when transferred to biological, social and economic systems 
became themselves suspect. 

Stability is an intrinsically imprecise concept and when precisely analysed explodes 
into a richness of definitions necessary to match the variety of the world but far 
removed from our intuitive concept of a stable system (Habets  & Pfeifer, 1973). The 
notion of a state, so clear in system design, becomes a mathematical  artefact when it 
has to be inferred from system behaviour  (Zadeh, 1964). The notion of adaptivity is 
particularly interesting because it has biological roots and yet has played an important  
role in circuit and control theory (Zadeh, 1963)- -again  the notion explodes with 
combinatorial  complexity when analysed precisely (Gaines, 1972). Zadeh ' s  (1962) 
paper  marked  a turning point in his own thought p rocesses - - f rom a major  involvement 
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during the 1950s with the frontiers of mathematical system theory---culminating in 
the early1960s in formal definitions of basic systemic concepts---calling in 1962 for 
new foundations for these concepts when applied not only to biological but also to 
inanimate systems--and providing it in 1965 with fuzzy sets theory. To take the new 
tools we now have and go back to the fundamental system concepts of state, stability, 
adaptivity, and so on, and give them exact definitions that accurately reflect their 
intrinsic imprecision--that  is still a task for the fuzzy future. 

Links with nonstandard logics 

Fuzzy sets theory has very close links with the nonstandard multivalued logics of 
I.ukasiewicz (Rescher, 1969), but it has gone beyond this in two distinct directions: 
first, in developing a linguistic semantics for the logic in terms of fuzzy hedges (Zadeh, 
1973), and secondly in its wealth of practical applications. I safely predict now that 
in 25 years time textbook writers may well account for fuzzy sets theory as the 
development  of semantics for Lukasiewicz logic that gave it a practical importance 
previously only possessed by the standard predicate calculus. It did not actually happen 
that way but history is itself subject to revision through rationalization. 

Nonstandard logics arise when we reject the binary, black-and-white, distinctions 
that we generally presuppose-- that  our terms of reference, our data, our measure- 
ments, our plans, and so on, are well defined. In logic this occurs classically as the 
problem of the borderline case, the rose that is neither red nor not-red but somewhere 
in the excluded middle between the two (Sanford, 1975). It is the basis of the antinomy 
of predication that Russell discovered in Frege's foundations of arithmetic at a time 
when they seemed complete (Kneale & Kneale, 1962): that every predicate, every 
distinction, does not serve to define a se t - - the  axiom of comprehension that assumes 
this unrestricted predication leads to paradoxes in set theory. Zadeh's  choice of 
Lukasiewicz logic as a foundation for his theory of fuzzy systems was vindicated in 
its fundamentals 10 years later by the work of Maydole (1975) and White (1979): 
the former showing that most nonstandard logics also give rise to paradoxes in set 
theory, and the latter that Lukasiewicz logic does not. 

The significance of allowing imprecise distinctions in system theory may be seen at 
a fundamental level by noting that a system is nothing more nor less than a distinction. 
By making a distinction we cut out part of a world and give it additional systemic 
characteristics just by its being distinguished (Gaines, 1981b). This concept has been 
stated most clearly by Spencer Brown in his Laws of Form (Brown, 1969, p. v): 

The theme of this book is that a universe comes into being when a space is severed or taken 
apart . . . .  By tracing the way we present such a severance, we can begin to reconstruct, with 
an accuracy and coverage that appear almost uncanny, the basic forms underlying linguistic, 
mathematical, physical and biological science, and can begin to see how the familiar laws of 
our own experience follow inexorably from the original act of severance. 

Brown goes on to develop a "calculus of distinctions" which may be interpreted as 
standard propositional calculus (Schwartz, 1981), but which also subsumes a variety 
of nonstandard logics through other  interpretations (Kohout & Pinkava, 1980); these 
include Lukasiewicz/fuzzy logic as one of the forms. 

Nonstandard logics arise when we accept the uncertainty of our distinctions and 
note that definiteness in distinction is not available to us. Thus, they give us a calculus 
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of systems that can encompass the essential imprecision of our real world data without 
forcing us to introduce artefacts in order to satisfy a meaningless requirement for 
precision. 

Classical, probabilistic and fuzzy logics 

The applications of fuzzy reasoning in system studies now encompass a very wide 
range of disciplines from quantum physics and biology to computer and management 
sciences (Gaines & Kohout, 1977). It has also proved its practical worth in the solution 
of engineering control problems previously regarded as intractable (Mamdani & 
Assilian, 1975; Mamdani & Gaines, 1981). These applications perhaps also indicate 
a puzzle in that we already had techniques to deal with uncertainty. What is new, and 
how does it relate to the old? In the early years of fuzzy set theory it was necessary 
to emphasize the new, to draw attention to the differences and their value, and this 
led to an overemphasis in the literature on the lack of relation of fuzzy set theory to 
previous logics of uncertainty, such as probability theory. However, there are both 
Pandamental differences and fundamental similarities and relationships. 

The following technical sections give a rigorous formulation of these relationships, 
bringing out the similarities and differences, and attempting to place these in the 
context of their significance in systems analysis. In particular, it is shown that both 
probability and fuzzy logics may be derived from a weaker logic that is axiomatized 
as Lukasiewicz infinitely valued logic but is not truth-functional. Probability logic has 
the added axiom of the law of the excluded middle, and fuzzy logic has the added 
axiom of truth functionality. However, key results for systems analysis may be derived 
with the weaker logic and hence apply to both probability and fuzzy logics. Some 
paradoxes of classical logic are used to derive these results, including the generation 
of numerical truth values, probabilities, degrees of membership, systems rules and 
arithmetic means, as features of all the logics considered. It remains to undertake the 
mammoth task of rebuilding system theory on logical foundations that are difficult 
for us who are over-tutored in the standard results and import them too readily when 
they are not legitimate (Ackermann, 1967). 

A standard uncertainty logic as a valuation on a lattice 

If the links between classical logic, probability and fuzzy logic are to appear clearly, 
so that similarities and differences are transparently obvious, it is useful to develop 
all three through parallel paths until the essential divergencies are apparent. We here 
develop a logical system through a valuation on a standard lattice of propositions 
which corresponds to the classical propositional calculus if the valuation is binary, but 
to both probability and fuzzy logics if it is multivalued in the unit interval. The final 
divergence between probability and fuzzy logics is made through the addition of 
differing simple and natural requirements which the logic might additionally meet. 
However, it is noted that most of the key features and theorems of both logics are 
available before this divergence--features and theorems significant for many applica- 
tions are independent of the particular logic used. 

Let L(X, F, T, v, A) be the free lattice generated by a set of elements, X, under 
the two (idempotent, commutative) semigroup operations, v, ^, with maximal element 
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T and minimal element F, i.e. L satisfies 

(P1) Vx eL ,  x vx = x  ^ x - - x ,  
(P2) Vx, y c L ,  x v y = y v x ,  X A y = y A x ,  
(P3) Vx, y , z ~ L ,  x v ( y v z ) = ( x v y ) v z ,  xA(yAZ)=(XAy)AZ,  
(P4) Vx, y ~ L ,  XV(XAy)=x ,  XA(XVy)=x ,  
(P5) V x ~ L ,  x v T = T ,  XAT=X,  x v F = x ,  x A F = F  

the idempotent,  commutative, associative and adsorption postulates, together with a 
definition of the minimal and maximal elements (Birkhoff, 1 9 4 8 ,  p .18 ) .  The usual 
order relation may also be defined: 

(P6) Vx, y eL ,  x<-y ~- -~3z~L:y=xvz .  

Now suppose that every element of L is assigned a " truth-value",  such as a "probabil- 
ity" or "degree of membership",  in the closed interval [0,1] by a continuous order- 
preserving function p : L ~ [0 ,1 ]  subject to: 

(P7) p(F) = 0, p(T) = 1, 
(P8) Vx, y ~L,  x<-y -~ p(x)<-p(y), 
(P9) Vx, y e L ,  p(x v y ) + p ( x  Ay)=p(x)+p(y), 

i.e. p is a continuous, order-preserving valuation on L (Birkholt, 1948, p. 74). Note 
that for p to exist the lattice must be modular, and that we have 

Vx, y e L ,  p(xAy)<-min(p(x),p(y))<-max(p(x),p(y))<_p(xvy), (1) 

Now the relation defined by 

(P10) Vx, y ~ L  x=-y ~-~p(xvy)=p(xAy) 

is a congruence on L (Birkhoff, 1948, p. 77) so that 

Vx, y, z ~L,  x- -y  -~ ( x v z ) = ( y v z ) ,  ( xAz)=(yAz) ,  (2) 

which in its terms implies 

Vx, y, z ~ L ,  p ( x v y ) = p ( x ^ y ) - - ~ p ( x v z ) = p ( y v z ) ,  p(XAZ)=p(yAZ),  (3) 

i.e. x = y means that y may be substituted freely for x in both L and p expressions 
without changing their value. Thus with respect to the valuation p the relation ---is 
one of logical equivalence. 

Note that x -=y  is a relation on L, not an element in L. However,  it is useful to 
consider the possibility of there existing within L an element z that behaves as x - y  
in that 

z = T  ~--~ x------y. (4) 

We shall regard the symbol x -~y as also standing for the class of such elements, if 
any exist. We can then write relation (4) as 

Vx, y eL ,  p(x - - y )= l~-~x - -y .  (5) 

Note that the use of the expression p(x ~- y) does not mean that all members of the 
equivalence class have the same valuation. They need only have the same valuation 
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when this is 1 and then the constraint expressed in relation (5) applies. This is a 
common feature of multivalued logic, that functions such as equivalence are con- 
strained to have the obvious semantics when they express the truth of a relation but 
otherwise can take a variety of forms giving essentially different logics (Rescher, 1969). 

In terms of structure some of the features of both probabili ty and fuzzy logic are 
already apparent.  (P8) and (P9) together ensure that the logic gives the standard truth 
tables for conjunction and disjunction when restricted to binary values. (P9) is a 
proper ty  we associate with additivity of probabili ty and inequality (1) brings in the 
max /min  functions we associate with fuzzy logic- -both  features belong to the system 
defined so far. 

Impl icat ion in a S U L  as a distance funct ion 

We can complete this system by defining an implication function in terms of a natural 
distance on the lattice L. Define 

( P l l )  Vx, y E L, d(x, y) = p(x A y) - -p (x  v y). 

The function d is a quasimetric on L (Birkhoff, 1948, p. 77) satisfying 

Vx ~L, d(x, x)=0 (6) 
Vx, y e L ,  O<-d(x, y)-< 1, (7) 
Vx, y, z EL, d(x,z)<:d(x,y)+d(x,z). (8) 

The congruence of (P10) is such that the quotient lattice of L under it has d as a true 
metric such that 

Vx, y e L ,  d(x,y)=O<--*x=-y. (9) 

Hence,  consistent with constraint of relation (5), we can define a measure of the 
equivalence between two elements in terms of the distance between them: 

(P12) Vx, y ~L,  p ( x ~ y ) = l - d ( x , y ) = l - p ( x v y ) + p ( x ^ y ) .  

This gives all members  of the equivalence class denoted by x --- y the same valuation. 
It  is then natural to define a variation of the extent to which x " implies"  y by 

noting that if x = y is true in standard logic then x ^ y = x and x v y = y, and letting 
the degree of equivalence of what would normally be equalities define 

(P13) Vx, y ~L,  p(x~y)=p(x=---xAy)=l--d(x, xAy)=l--p(x)+p(x^y)  
= l + p ( y ) - - p ( x  V y) = 1 - d ( y ,  x v y) = p ( x  ~ x  v y). 

Again x ~ y should be read as a symbol for a set of lattice elements,  possibly empty,  
such that they satisfy the constraint of (P13). 

Negation may be defined in the usual way (Prior, 1962, p. 50) in terms of equivalence, 
and (P5), (P7) and (P13) may be used to obtained a well-defined value for p(J?), the 
valuation of each m em ber  of the equivalence class s in terms of p(x): 

(P14) Vx ~ L, p (.,?)=p(x =--F) =p(x DF) = 1 -p(x), 

and we have, conversely, 

V x e L ,  p(x--T)---p(T=x)---p(x). (10) 
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The  logical system we have defined through a valuation over  a lattice of propositions 
is a simple and natural one that will be shown to include both probabili ty and fuzzy 
logics as special cases. It has so many of the expected features and theorems of both 
probabili ty and fuzzy logics that I have previously termed it a standard uncertainty 
logic (SUL) (Gaines, 1978a).  SUL defaults as expected in the binary case in that the 
definitions of valuations for conjunction, disjunction, equivalence, implication and 
negation have the standard truth tables when the valuation can only take the values 
0 and 1. It does not have the law of the excluded middle as a theorem. However ,  if 
e lement  exist within L that correspond to x - - y ,  x ~ y, and s then we have from 
(P9) and (P13) that 

Vx, y~L ,  p(XV(X~y))+p(XA(XDy))=I+p(XAy),  (11) 

SO that, substituting F for y : 

Vx eL, p(x v i ) + p ( x  A~?)-- 1, (12) 

showing that the law of the excluded middle (p(x v ~) = 1) and the law of contradiction 
(p(x A i ) = 0 )  are equivalent in the logical system defined in that postulating one 
allows the other to be derived. 

Some system-theoretic results in a SUL 

Certain practical results hold for a standard uncertainty logic without any further 
postulates that are key to a range of system-theoret ic  applications to decision and 
control. The implication valuation of (P13) has the proper ty  that 

Vx, y eL, p(y)=p(x v y ) -  l + p ( x  Dy)>_p(x)-(1-p(x ~y) ) ,  (13) 

which enables a lower bound to be placed on the truth value of y given those for x 
and x = y, thus allowing a multivalued form of modus ponens. 

This result is particularly interesting if applied to the problem of paradoxical results 
generated by long chains of inference. The classic paradox is that of deciding whether 
someone  is bald: clearly someone  with no hair is bald, and surely someone  who differs 
f rom a bald man by having only one additional hair can also be considered bald, but 
then by repeated extrapolation someone  with any amount  of hair is bald. Classical 
logic has difficulty with this type of argument  because it makes  no provision for an 
inference to be almost, but not quite, valid: either x z y is true or  it is false. If we 
read x as B(n - 1 ) :  a man with n - 1  hairs is bald, and y as B(n): a man with n hairs 
is bald, then the paradox arises because x ~ y is so nearly valid that we do not wish 
to deny it, yet when repeatedly applied it leads to unacceptable inference, that is, 
f rom the truth of B(0) we can infer the truth of B(n) for any n. 

SUL, however,  allows for an inference rule to be nearly, but not quite valid, for 
example we may set 

p ( x D y ) = l - a  or p ( B ( n - 1 ) ~ B ( n ) ) = l - a ,  (14) 

where c~ is very small, so that the truth value of B ( n -  1 )=  B(n) is very near to, but 
not quite, 1. Then relation (13) gives us 

p (B(n)) -->p(B(n - 1)) - a ,  (15) 
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from which we may infer, by repeated application that 

p(B(n)) ->p(B(0) ) -n  x a, (16) 

so that, even though B(0) might be true, and the inference rule B ( n - 1 ) ~ B ( n )  is 
nearly true, the truth value of B(n) declines with the length of the chain of inference 
necessary to derive it. This is an intuitively satisfying model for this type of paradox 
and its resolution. 

When we are actually dealing with rules of inference that are valid in that p (x D y) = 
1, we can derive from relation (13) 

Vx, y ~ L  p ( x z y ) = l  ~ p(y)>-p(x), (17) 

so that the form of implication defined for a SUL satisfies the requirement (I,ee & 
Chang, 1971) that the assertion of x = y  may be used to infer that p(y)>-p(x). The 
result of relation (17) generalizes to a very significant inequality that, when y is 
constrained by rules of the form x Dy ("if x then y") ,  a lower bound of max(p(x)) 
may be placed on p(y): 

Vx, y c L  such that x b y ,  p(y)>-max(p(x)). (18) 

This is a key pattern of inference in the decision and control applications of fuzzy 
reasoning (Mamdani & Assilian, 1975) where a number of "rules" are given that are 
then used to derive actions from actual data. It is worthwhile emphasizing that this 
result, although generally thought of as one of "fuzzy reasoning" actually applies to 
"probabilistic reasoning" also, that is, if we have a rule that from knowing x we may 
derive y, then if we know the probability that x has occurred we may infer that the 
probability that y has occurred is at least as great as this. Gaines (1975a) showed 
that the control strategy derived by Mamdani & Assilian (1975) through the application 
of rules of fuzzy logic to their data was replicated when probabilistic rules were applied 
to the same data. Thus, relation (18) expresses a common pattern of inference in 
both probabilistic and fuzzy control and decision making. 

Derivation of fuzzy and probability logics from a SUL 

The unusual feature of SUL is that it is non truth-functional in that the values of 
p(x v y), p(x A y), p(x----y) and p(x b y ) ,  cannot be obtained from p(x) and p(y). 
However,  there is only one degree of freedom since (P9) ensures that the fixing of 
p(x A y) also fixes p(x v y) and vice versa, and even this freedom is restricted by the 
inequality of (1). If we require the SUL to be strongly truth-functional such that the 
valuation of any connective can be determined in terms of the valuations of its 
constituents, then the arguments of Bellman & Giertz (1973) show that the outer  
inequalities of (1) become equalities and the logic is Lukasiewicz' infinitely valued 
logic (Rescher, 1969, section 6). This has the connectives used by Zadeh (1965) for 
fuzzy logic: 

(El) 
(L2) 
(L3) 
(L4) 

0---p(x)-< 1, 
p ( ~ ) = l  p(x), 
p(x A y) = rain (p(x),p(y)), 
p(x v y) = max (p(x),p(y)), 
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(L5) 
(L6) 

p(x - ' y ) = r a i n  (1 ,1 -p (x )+p(y) ) ,  
p(x =-y) = rain (1 - p ( x )  +p(y),  1 +p(x ) -p (y ) ) .  

This is a significant result because it explains some of the attraction of fuzzy logic. 
The requirement of truth functionality is one which makes the logic computationally 
tractable, both for people and for computers. Whether the logic is actually truth 
functional in a particular application clearly depends on the semantics of that applica- 
tion, but the assumption that leads to the connectives of fuzzy logic is a way of resolving 
the uncertainty about derived truth values in a consistent fashion. Any other resolution 
leaves the valuation of a compound proposition dependent not just upon the valuation 
of its constituents but also upon their structure. With any other assumption we have 
to remember not only the truth values of derived propositions but also the way in which 
they were derived. 

This truth functionality does not hold for probability logic and this may be derived 
from SUL by an alternative additional assumption, that the law of contraction holds 
so that p(x v J?)= 1. Equation (11) shows that this is equivalent to assuming that the 
law of the excluded middle holds, and either assumption gives a standard probability 
logic (Rescher, 1969, p. 185): 

(R1) 
(R2) 
(R3) 
(R4) 

o~-p(x), 
p(x v y ) = p ( x ) + p ( y )  if x and y arc mutually exclusive, 
p (x) = p (y) if x and y are logically equivalent, 
p(x v ~ ) =  1. 

which is also the system defined by Fenstad (1967) to represent probabilities on a 
first order language. 

Thus an SUL system of valuations on a lattice as defined above subsumes both 
probability and fuzzy logics and enables key inference rules common to both to be 
derived. The logics only diverge in a final step whereby the use of fuzzy logic assumes 
strong functionality and the use of probability logic assumes the law of the excluded 
middle. I emphasize this not to suggest that the differences between the two logics is 
trivial, but rather to show that it does not necessarily lie in major part in the connectives 
used. For many applications an SUL is adequate and this encompasses both forms of 
connective. It is rather to the forms of the applications themselves that we should 
look for the interesting differences between the fuzzy and probability logics. 

Axiomatic form of SUL 

There is an alternative approach to the SUL and its relation to fuzzy and probability 
logics that brings out further features of the relationship. In particular it shows how 
both logics relate to the analysis of possibilistic systems (Gaines & Kohout, 1975; 
Zadeh, 1978). For this approach we go back to the formal axiomatic systems underlying 
the logics. 

Lukasiewicz infinitely-valued logic has the underlying formal system (Rescher, 1969; 
Gaines, 1976) of the following four axioms in terms of falsity and implication as 
primitives: 

(AI) Vx, F ~ x ,  
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that from the assertion of falsity, or a contradiction, any proposition may be inferred; 
(A2) Vx, y, x ~ ( y  ~x ) ,  

that a true proposition may be inferred from any proposition, the so-called paradox 
of material implication; 

(A3) Vx, y, ( ( x ~ y ) D y ) ) ~ ( ( y ~ x ) ~ x ) ,  
that disjunction and conjunction are symmetric (see DD and DC, following); 

(A4) Vx, y,z, ( xDy)~( (y~z)D(XDZ)DX) ,  
that implication is transitive. 

To these must be added the inference rules of substitution, that any well-formed 
formula may be substituted uniformly for any variable in a theorem, and modus ponens 

(MP) Vx, y, x, x ~ y  ~ y, 
that from x and x ~ y we may infer y. 

The remaining logical connectives may then be defined as 

(DN) 
(DD) 
(DC) 
(DE) 

This logical 
additional axiom is assumed that 

(A5) Vx, y, 
which from (DC) is equivalent to 

(A5') u y, 
which, if we substitute F for y, gives us 

Vx, 

Negation: i for x D F, 
Disjunction: x v y for (x ~ y) D y, 
Conjunction: x A y for --(--x v --y), 
Equivalence: x ------y for (x ~ y) A (y ~x) .  

system reduces to the standard propositional calculus (PC) if the 

((x = y ) = x ) = x ,  

(x ~ y )  vx, 

(x =F)  vx  or ; vx,  
which is the law of the excluded middle. 

The axioms (A1)-(A4), inference rules, and definitions are satisfied by a SUL and 
serve to define it in non-numeric terms. They are generally thought of as axioms for 
Lukasiewicz logic and Wajsberg (1967) derives the numeric form given in (L1)-(L6) 
from them. However,  he assumes that the logic is truth-functional and hence his result 
is parallel to that of the previous sect ion-- that  an SUL that is truth-functional is 
precisely Lukasiewicz' infinitely-valued logic. 

The other parallel result is that a probability logic as defined by (R1)-(R4) also 
obeys these axioms together with (A5) also-- that  an SUL with the law of the excluded 
middle is precisely Rescher's probability logic. Rescher (1963) has shown that probabil- 
ity logic is formally equivalent to the modal logic $5, and this is apparent in axioms 
(A1)-(A5) being those of the implicational fragment of $5 provided ~ is regarded as 
a "strict" implication (Lemmon, Meredith, Meredith, Prior & Thomas, 1969; Ander-  
son & Belnap, 1975). 

It is interesting to summarize these results by relating them back to some of the 
proposed applications of the logical calculi also. Gaines & Kohout  (1975) and Zadeh 
(1978) have proposed that Lukasiewicz or fuzzy logic be regarded as a basis for a 
possibilistic system theory and given illustrations of its applications to database systems 
(Gaines, 1981a) and to the extension of probabilistic sequential system identification 
(Gaines, 1977) to uncertain sequential data (Gaines, 1979). The modal logic $5 is the 
classical logic of possibility of Lewis & Langford (1932). It is also the system that 
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Rescher (1963) has shown to underly probability logic which is itself used in practice 
as a basis for possibilistic system theory. The standard uncertainty logic developed in 
this section draws all these systems together and shows both their close inter-relation- 
ships and also their essential differences; Fig. 1 illustrates this in diagrammatic form. 

Lukasiewicz 
oxioms 

Stondord 
uncertainty 

logic 

I 
1 1 

Truth Excluded 
functional middle 

Lukosiew ~cz Rescher 
infinite-valued logic probability logic 

Fuzzy sets Standard sets 

Gaines / Kohout / Zadeh Lewis / Lo ng ford $5 
possibilistic logic possibilistic logic 

FIG. 1. Relations between SUL and possibilistic logics. 

The origin of numeric truth values 

One feature of both fuzzy and probabilistic logics, as models of uncertain reasoning, 
that is often taken as counter-intuitive is their use of numbers to represent probabilities 
or degrees of membership, and their use of exact logical formulae for deriving results. 
The analysis of the bald man paradox above shows how an SUL, and hence probability 
and fuzzy logics, can adequately represent approximate or uncertain reasoning. From 
the underlying axiomatic structure of these logics it is also possible to show how the 
numeric truth values arise in a simple and natural way. 

It is convenient to state this in terms of the resolution of a further paradox of 
classical logic, that of Russell's barber who shaves everyone in a village who do not 
shave themselves---does he shave himself? This corresponds to the fault in Frege's 
axiom of comprehension in naive set theory that Russell discovered--that not all 
predicates define sets (Kneale & Kneale, 1962, Chapter 11). It led to Russell's theory 
of types (Copi, 1971) as a solution to the problem that retained the structure of 
classical logic without leading to inconsistencies in set theory by placing restrictions 
on those predicates which could define sets. It has long been suggested that an 
alternative approach to the problem is to change the rules of classical logic, but this 
has proved difficult. Maydole (1975) showed that variants of Russell's paradox could 
be generated for virtually all variant logics except two attributed to Post and 
LukasJewicz. These two cases were left open as Maydole's technique did not generate 
paradoxes but it was not possible to show using his methodology that some other 
technique might not do so. White (1979) showed that the quantified form of 
Lukasiewicz infinitely-valued logic did lead to a consistent set theory having a com- 
pletely unrestricted axiom of comprehension--any predicate defines a set. 



128 a .R.  GAINES 

Analysing Russell's barber paradox illustrates the way in which new truth values 
are generated in an SUL. If we take S to mean that the barber shaves himself then 
the following two lines of reasoning apply: if S is true then the barber shaves himself 
so that he is not shaved by the barber  and hence S is false, i.e. 

S = S (19) 

however, if S is false then the barber does not shave himself so that he is shaved by 
the barber and hence S is true, i.e. 

= S. (20) 

These taken together give us that 

S -~S, (21) 

which means that S is an impossible proposition for classical logic--it  is both true and 
false. However,  having already noted that the law of contradiction does not hold in 
an SUL, we should not be surprised to find that S is a perfectly legitimate proposition 
in that logic. Indeed from relation (21) and (P14) we may derive that 

p(S) = p ( S ) =  1 -p (S) ,  (20) 

so that 

p(S) = 1/2. (22) 

Now this should be a surprising result because nowhere in the definition of an SUL 
have we defined the number 1/2. It has arisen from the rules given on the basis that 
if there is a proposition S with a truth value that satisfies the predicates defined by 
Russell and the rules of an SUL then its truth value must be 1/2. Thus the assumption 
of existence of such a proposition has generated the need for, and effectively brought 
into being, the intermediate truth value, 1/2. Varela (1975) has used this same line 
of reasoning to bring a third truth value into Brown's (1969) logic of distinctions in 
order to model the phenomena of self-reference. 

The technique of using what are paradoxes of classical logic to generate truth values 
in a multivalued logic can be extended to give a generator for any required value. 
Consider an expression of the form of equation (20), i D x, then from (P13) and (P14) 

p($ D x ) =  1 - p ( i )+p(x  Ai)  =p(x)+p(x AI). (24) 

However,  from relation (1) 

p(x A 2) <-- rain (p (x ),p (i)) -- rain (p(x), l  -p(x)), (25) 

so that 

and hence 

p(x) <-1/2 ~ p(x A i ) = p ( x )  (26) 

p(x) < - 1/2 -~ p(x)=p(:~ = x ) / 2 .  (27) 

Now consider a series of propositions, S(i), that are defined recursively by 

(S(i) = S(i)) ----- S(i - 1), (28) 
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with 

S(0) -=FDF,  and S ( 1 ) - S ,  (29) 

where S is the proposition defined by relation (21). Then we have from relation (27) 
that 

p(B(i)) = (1/2)', (30) 

so that the assumption of the existence of the S(i) generates an infinite sequence of 
proposit ional constances with truth values having binary fractional powers, in place 
value notation of the form 0 . 0 0 0 0 1 0 0 0 0 0 0 . . .  in radix 2 for some position of one in 
a sequence of zeros. 

This may be extended to the generation of an arbitary truth value by considering 
an expression of the form 

R = (S(i) ~ (S(/) = (S(k) = (- �9 �9 = S(n))))), (31) 

where i < / < k  < . . '  < n .  Then 

p(R)  = (1/2) i + (1/2) i + (1/2) k + . . .  + (1/2)". (32) 

Hence  we may use the propositional sequence S(i) to generate any truth value by 
expressing it as a fractional binary expansion and putting the proposit ion S(i) in an 
expression of the form of equation (31) if there is a 1 in the ith binary place of the 
expansion. That  this derivation applies to an SUL in general, and hence to both fuzzy 
and probabilistic logics, again emphasizes the link between them since the modelling 
of the modal logic $5 through infinite binary sequences is a well-known result in 
temporal  logic (Rescher, 1969, p. 194). 

This derivation of numeric values f rom the basic axioms of the system, which 
themselves introduce only the numbers  0 and 1, is a significant indicator of the source 
of numeric truth values in uncertain reasoning. They may be seen as arising out of 
an order relation on propositions, which may be one of probability, credibility, plausibil- 
ity or some such term dependent  on how we view the situation creating uncertainty. 
Under  uncertainty we may not be able to make clear-cut assignments of truth or 
falsity to statements.  However ,  logical constraints may lead us to assertions of the 
form that "even though neither x nor y is definitely true or false, x is more  probable  
(credible, plausible) than y" .  This relation can be expressed by assigning x some 
non-zero truth value and y some greater,  non-unity truth value. Now if a further 
s tatement  is made that is more probable  (credible, plausible) than x and less than y 
then it needs to be placed between them. Thus, in terms of our fractional binary 
expansions, longer and longer sequences may become necessary to cope with the 
distinctions to be made in ordering the statements.  

The use of numbers  implies that we regard the uncertainties about  s tatements as 
being well-ordered. However ,  the arguments of this section apply also to the partially 
ordered algebraic structures that Goguen (1981) introduces as generalized truth-sets. 
We need some mechanism of interpolation if we are to encode the differentiations 
we wish to make  in our  statements about  the world and that is how the numbers  arise 
from the logical structure of our statements.  
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Arithmetic mean in a SUL 

As a final example of the way in which some of the s tereotyped distinctions between 
fuzzy and probabilistic logics have no basic foundation but arise out of use, consider 
the ari themetic mean,  or averaging opera tor  over  a set of truth values. This arises 
naturally in statistical operations involving probabilities but seems unnatural in fuzzy 
logic where a min or max operat ion is a more "na tura l"  way of combining numbers.  
However ,  the results of relations (24)-(27) can be extended to give a natural averaging 
operating in a SUL and hence in both fuzzy and probabili ty logics. Suppose we have 
n proposit ions X(i), 1 -  i -  n then we can first use an extended version of equation 
/24), analogous to equation (31), to implicitly define related proposit ions Y(i): 

X(i) = (Y(i) = (Y(i) = (Y(...)))), (33) 

where there are n Y(i) on the right-hand side, so that 

p (Y(i)) = p ( X ( i ) ) / n .  (34) 

Then we use the Y(i) in an expression again analogous to equation (31) to define a 
proposit ion Z: 

Z = (Y(1) ~ (Y(2) = (Y(3) ~ (... ~ Y)n)))), (35) 

so that 

p (Z) = p (Y(1)) + p (Y(2)) + p (Y(3)) + . . .  + p (Y(n)) 

= (p (X(1)) + p (X(2)) + p (X(3)) + . . .  + p (X(n)))/n.  (36) 

Thus the arithmetic mean of a set of truth values may be constructed within a SUL 
and hence is a legitimate operat ion of both fuzzy and probabil i ty logics. 

Sequential system identification 

As a final example that shows up the different roles of the fuzzy and probabilistic 
derivations f rom a SUL consider the problem of sequential system identification where 
the data is uncertain. This is a classical system-theoret ic  problem where the behaviour  
of a system is given as a t ime sequence and one at tempts to derive the structure of 
the system producing it (Gaines, 1978b). Thus one might have a sequence of symbols 
representing observations such as X Y X Y Y Y Y Y X Y  and wish to derive a deterministic, 
non-determinist ic or stochastic au tomata  that could have generated that sequence. 

The identification problem can be formulated as: given a class of models, M, and 
a class of behaviours,  B, derive a relation between B and M that ascribes one, or 
more,  models in M to a given behaviour  in B such that the relation is optimal under 
certain additional given constraints. These additional constraints are concerned with 
measures of approximation between models and behaviours and preference orderings 
of complexity on models. This problem was solved for deterministic au tomata  by 
Nerode (1958) and given a category theoretic formulation for general deterministic 
systems by Goguen (1973), Arbib & Manes (1974) and Ehrig (1974). It was solved 
by Gaines (1975b, 1977) for stochastic au tomata  and given a category theoretic 
formulation by Ralescu (1979) for general non-determinist ic systems. 
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A particularly interesting identification problem for this paper  is that where the 
observation sequence is itself uncertain. Suppose the behaviour  to be modelled is 
X Y X Y Z Z Z Y X Y  where the Z ' s  represent  uncertainty about  whether  an X or a Y was 
observed. There  is no mutual exclusion involved in the observation statements and 
we might represent  a specific situation by a series of degrees of membership:  

1 2 3 4 5 6 7 8 9 10 

X 1.0 0.0 1.0 0.0 0.6 0.8 0.7 0.0 1.0 0.0 
Y 0.0 1.0 0.0 1.0 1.0 1.0 1-0 l-0 0.0 1-0 

Thus, the sixth observation s ta tement  says that Y possibly was observed with degree 
of membersh ip  1-0 and X possibly was observed with degree of membership  0.8. If 
we had our eyes closed at the time both would be 1.0, but the s tatement  implies that 
we have less evidence for X than for Y. 

Now, this uncertainty about  the behaviour  also induces an uncertainty about  the 
model for it. There  are various possible models for this sequence and they are not 
mutually exclusive. However ,  if we take the models themselves to be automata  then 
the states of the model  are mutually exclusive. This is a result of the semantics which 
we impose on the notion of state, that a system can be in only one state at a time. 
Gaines & Kohout  (1975) show that the conventional model of a non-deterministic 
au tomata  is inadequate to cope with these semantics and that a probabilistic model 
must be used that corresponds to the modal logic S5- - the  required constraint is that 
the automaton must be in one, and one only, state at a time. This gives us a mixed 
result in that we have a (fuzzy) possibilistic distribution over models which themselves 
have a (probability) possibilistic distribution over  states. 

Gaines (1979) gives a solution to modelling the above sequence as three stochastic 
grammars  each with a differing degree of membership:  

MI :  membersh ip  = 0.6, approximation -- 0.300, 
a--*Xb ( p = l . 0 )  b -* Ya ( p = l . 0 ) ;  

M2: membersh ip  = 0.7, approximation = 0.693, 
a --* Xb ( p = 0 . 8 )  a --* Yb ( p = 0 . 2 )  b ~ Ya ( p = l . 0 ) ;  

M3: membersh ip  = 1.0, approximat ion = 0.817, 
a --*Xb ( p = 0 . 6 )  a --* Yb ( p = 0 . 4 )  b o Y a  ( p = 1 . 0 ) .  

M3 may be seen as a model based on taking the most certain observations and then 
deriving the best fit to them. It leaves a high degree of probabilistic uncertainty in 
the model. M1 is at the other extreme and removes this uncertainty altogether by 
precisifying the data, saying that observation 5 should be taken as an X rather  than 
a Y. Note that all three models are valid in some sense - -we  cannot say more about  
possible models without making further assumptions which are not inherent in the 
data as presented. 

The essential mixture of fuzzy and probabilistic uncertainty involved shows up well 
if we consider the predictions of each model at each step. All three models agree that 
observat ion 1 was X and 2, 4, 6, 8 and 10 were Y - - t h e y  agree on resolving the 
uncertainty about  observation 6. However ,  M2 and M3 introduce uncertainty in the 
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models about what could have happened at 3 and 9 when there was no uncertainty 
about the data. If we combine all three models then the prediction as to the observation 
expected at 2, 4, 6, 8, 10 is Y with degree of membership 1.0 and probability 1.0. 
However,  the prediction at 1, 3, 5, 7, 9 is more complex and may be represented as 

X ((1.0, 0.6), (0.8, 0.7), (0.6, 1.0)), 
Y((0.0, 0.6), (0.2, 0.7), (0.4, 1.0)), 

where the interior pairs are a probability together with its degree of membership. 
Hence the predictions of X and Y have become possibility vectors to use Zadeh's  
(1978) terminology. 

This example shows the differing roles that the fuzzy and probabilistic resolutions 
of a SUL possibility logic have in modelling differing forms of possibilistic uncertainty. 
It also demonstrates that the different logics are not competitive or mutually exclusive 
and that combinations are necessary to represent even a fairly simple modelling 
situation. 

Conclusions 

One major conclusion to be drawn from this paper should now be obvious-- that  fuzzy 
sets theory and probability theory should be viewed not as rivals, and not necessarily 
even as complementary,  but rather as similar logical systems, having a common core 
that is adequate for many aspects of systems analysis and design, and differing in 
certain well-defined features that may, or may not, be relevant in particular applica- 
tions. 

A standard uncertainty logic (SUL) based on a system of valuations on a lattice 
subsumes both probability and fuzzy logics and enables key inference rules common 
to both to be derived. The logics only diverge in a final step whereby the use of fuzzy 
logic assumes strong functionality and the use of probability logic assumes the law of 
the excluded middle. This is not to suggest that the difference between the two logics 
is trivial, but rather to show that it does not necessarily lie in major  part in the 
connectives used. For many applications an SUL is adequate and this encompasses 
both forms of connectives. 

In terms of generating general systems methodologies (Gaines & Shaw, 1981) that 
can commence with primitive notions of making distinctions and build up the whole 
structure of ontology, epistemology and axiology required for both mathematical 
theory and engineering practice the notion of a SUL presented here seems to take 
us one further step towards a unified theory of systems. [ hope the presentation has 
been such that the key results common to both fuzzy and probability logics stand out 
as obvious both in derivation and implication. 

Returning to my initial theme it seems clear that the past is fuzzy also, not only in 
the history of fuzzy sets theory over the past twenty years, but also technically when 
we set up modelling schemata as in the previous section. The precision of the past, 
and the precision required in past methodologies, can both be seen to be myths, very 
significant myths that have generated much that is fundamentally important. However,  
there comes a time when any myth has served its purpose and we must put away 
dogma and look at reality with fresh eyes if we are to see into greater distances and 
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greater depths. We now have the tools to control the effects of the precisiation and 
to do away with an artificially precise past, if that is what is necessary to lead us into 
a fuzzy, but realistic, future. 
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