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Abstract This paper is concerned with the widest class of automaton structures 
whose semantics is compatible with our notions of state and automaton. It is 
first shown that the conventional spectrum of deterministic, stochastic, fuzzy and 
non-deterministic can be fitted into a single framework which is complete. In 
particular new results on the normalization of fuzzy automata and the relationship 
between fuzzy and stochastic automata are derived. A practical counter-example 
is then developed that does not fit into this spectrum, showing it to be inadequate. 
This is based on the richer interpretation of the notion of possibility that is 
required in the analysis of system stability and reliability. Finally, basic 
arguments are advanced to show that the structure must be at least an ordered 
semiri~ and at most a commutative ordered semiring. 

1 Introduction 

The concept of an automaton, or state-determined machine, has come to play 
a substantial role in many disparate branches of science and engineering. The 
joint origins of the concept in biolo~y and computer engineering have been 
succintly reviewed recently by Burks L1J. In a related survey Arbib [2J 
criticizes the applicability of current automata theory and suggests that many new 
developments and extensions are required. This criticism will be echoed by those 
who have recognized the concepts of automata theory as relevant to their own 
disciplines but have been disappointed in the dearth of applicable results. 

The convictions, on the one hand, that the basic concepts of automata 
theory are relevant but, on the other, that the present developments are not 
sufficiently fruitful have prompted several workers to investigate new automaton 
structures, e.g. Arbib's tolerance automata [31 and Zadeh's fuzzy automata 14J. 
Through the very diversity of interests involved automata theory has grown up 
piecemeal with a variety of automaton structures and semantic interpretations. 
The continuing intermittent addition of new structures reinforces the impression 
that not just the development of the subject but perhaps also its foundations 
are, in some sense, incomplete. 

This paper was motivated by our own experience in applying algebraic 
system theory to problems of system identification, stability and control, where 
we have found it necessary to define automaton structures that do not fit the 
conventional spectrum of deterministic, stochastic, fuzzy and non-deterministic 
automata. These new structures initially appeared to be representable as automata 
over modal logics rather than Boolean algebra. However, the need soon became 
apparent for mixed logics involving continuous probability intervals as well as 
discrete modalities, and the variety of possibilities led us to look for some more 
general approach. 
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By suitable choice of V and $ we will show that we can take the normalization for 
the four cases considered to be: 

The standard forms of statement are briefly reviewed in the following 
sections. 

2.2 Deterministic States 

These express the conditions that arise when a system's behaviour is 
completely defined and determinate. The automaton representing it is always in a 
well-defined, 'sharp', state. We can express this: for each state, it is true or 
false that the automaton is in the state and the automaton is in precisely one 
state. A suitable truth set is binary, V = {O,l}, with ~ being arithmetic ~, and 
the normalization as in equn.l. This necessitates only one state being mapped onto 
1, and hence we could express the normalization as, 'the inverse image of 1 under 6 
contains just one element'. 

2.3 Stochastic States 

These express the conditions that arise when a system's behaviour is a 
Markov process whose behaviour is constrained by well-defined probabilities. The 
probability of the automaton representing it being in a particular state is then 
always well-defined. That is, for each state, the probability that the automaton 
is in the state is defined and the automaton is in precisely one state (the 
probabilities over all states sum to one and the conditional probabilities of the 
automaton being in one state given that it is in another are all zero). A suitable 
truth set is a closed interval of reals, V = [O,lJ say, with e being arithmetic ~, 
and the normalization as in equn.l. 

2.4 Fuzzy States 

Zadeh's concepts of fuzzy logic [7] and fuzzy automata [4J represent an 
attempt to provide a calculus of a roximate reasonin. Formally, a fuzzy logic 
is a Lukasiewicz LNI system [8 p.337 but Zadeh 9,10,11J has contributed detailed 

semantics which make the application of the logic attractive and practically useful, 
for example in pattern recognition [12J and control engineering [13,14]. 

Hence fuzzy states express the conditions that arise when a system's 
behaviour is being described by a process of approximate reasoning. The degree of 
membership of a particular state of the automaton representing it to being the 
actual state is defined. If we take the usual fuzzy logic system with the truth 
set being the closed interval of rea1s and ~ being a MAX operator, then V = [O,lJ 
anda~b = MAX(a,b). 

2.4.1 Normalization of Fuzzy States 

The normalization of fuzzy state sets to express the condition that the 
automaton is actually in precisely one state requires special attention. The 
~ublished semantics of fuzzy automata seem confused on this point. Wee aoo Fu 
LIS] state that if a state has a degree of membership of unity then the automaton 
is definitely in the associated state. However, the converse is not true and it 
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It has been shown by Santos and Wee [5J that the main spectrum of 
deterministic, stochastic, fuzzy and non-deterministic automata can be fitted into 
a single formalism, but this is descriptive rather than axiomatic. It leaves open 
many questions: whether further automaton structures can be invented ad i~fin~tum; 
what is the most general formulation. and so on. The search for genera11ty 1S 
itself dubious unless backed by definite practical requirements expressed as 
semantic constraints. In this paper we take three distinct approaches to the 
problem of establishing the most general structure possible for an automaton: 
analysing first a sense in which the conventional spectrum of automata is already 
complete; secondly arguing from practical application requirements that this 
spectrum is inadequate; and thirdly, reversing the direction of increasing 
generality, to show by foundational arguments that certain quite powerful structural 
constraints are necessary to an acceptable concept of an automaton, i.e. that 
arbitrary algebraic structures formally similar to automata do not necessarily 
possess viable semantics. 

The title of this paper is something of a play on words since we are 
concerned both with the weakest algebraic structures that are possible for automata, 
but have also chosen to develop all our exemplars within a range concerned with the 
expression of uncertainty, notably the fine, but important, distinction between the 
possible and the Q£QpabJe. Section 2 analyses the conventional spectrum of 
automata in terms of the underlying truth sets and semiring operators, and shows 
that it may be seen as a complete set of variants of two basic parameters. 
Section 3 analyses the requirements upon practical explicata of uncertainty about 
behaviour, and shows that they cannot be met by these variants. It develops an 
exemplary class of automata over a multi-valued logic of possibility and probability. 
The final section summarizes the extensions made and raises the converse question of 
the weakest possible structure that supports our concept of an automaton. 

2 Conventional Automaton Structures 

2.1 V-sets and Normalization 

We take as our informal concept of an automaton at this stage the usual one 
of a machine with internal states and external inputs whose next state is a function 
only of its current state and current input. It is the form of this next state 
function, NSF, which is primarily of concern in this paper. It is only when a 
deterministic automaton commences in a known state that the next state itself is 
sharp, i.e. uniquelY defined. Usually we have a statement about the current state 
of the automaton and the NSF enables us to infer a further statement about the next 
scage. 

The standard forms of statement can all be represented as mappings from the 
set of states. S, to a truth set. V, 0: S ~ V; Goguen [6J calls such a mapping a 
V-set with S as carrier. For the purposes of describing automata states we also 
require normalization conditions expressing that the automaton is actually in one 
and only one state. We shall later take V to be a semiring with binary operations. 
~ (we do not use '+' because it can be conflused with arithmetic +) which is 
associative and commutative, and e which is associative, often commutative, and 
distributes over~. Hence it is convenient to express the normalization condition 
in terms of the formal expression Ees o(S), meaning the result of operating over 

the co-domain of 0 in the truth-set with m (i.e. 'summation' over the truth set if 
~ is actually +. We assume such summation is well-defined if S should be infinite). 
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is possible for the rules of fuzzy logic to generate a situation in which the 
degrees of membership of all states are zero except one which is not unity. This 
is so even if the total degree of membership is "normalized" as suggested in L1S] 
in the same way as a stochastic automaton (arithmetic sum of degrees of membership 
being unity). It also leaves open the meaning of ~ distinct states each having 
a degree of membership function of unity - an important case since it corresponds 
to the classical non-deterministic automaton. 

It seems better to place the emphasis on the degree of membership of a 
state being zero as implying that the automaton is not in the associated state. 
With the usual fuzzy logic definitions of V and $ given in section 2.4, our 
normalization condition of equn.l requires only that at least one state has a degree 
of membership of unity. This condition is consistent with the definition of ~ in 
fuzzy logic, whereas the proposed "normalization" of [15] introduces arithmetic +, 
an operator outside fuzzy logic. Neither normalization is consistent with a degree 
of membership of unity implying that the automaton is definitely in the associated 
state, and this needs replacement. 

A similar problem arises with non-determinate automaton and is clearly a 
semantic one to be resolved in actual applications. The formal normalization 
condition proposed here retains consistency between fuzzy automata and the others. 
We would propose the interpretation that a fuzzy automaton is definitely in a state 
if the truth values of all the other states are zero. The normalization then 
implies that the truth value of~remaining state is unity - the converse is not 
true. 

2.5 Non-deterministic States 

These might more positively be called 'possibilistic' since they express 
the conditions that arise when a system's behaviour is such that only the possibility 
and impossibility of its being in a given state can be discriminated. That is, for 
each state either it is possible, or impossible, that the automaton is in the state 
and the automaton is in precisely one state (at least one state is possible, and if 
only one state is possible then the automaton is in that state). A suitable truth 
set is binary, V = {O,l}, with ~ being Boolean 'OR' which also corresponds to the 
MAX operation over this truth set. The normalization of equn.l implies that the 
inverse image of 1 under 6 contains at least one element (as it also does for fuzzy 
states) • 

2.6 From States to Transitions 

For the moment we shall take it for granted that the nature of transitions 
can be expressed in terms of the same truth set as that for the states themselves. 
for example, a 'stochastic automaton' is one with stochastic states and stochastic 
state transitions. We can express the NSF as a function, 6: S x S + V, which 
satisfies the normalization condition: 

S E: S, E9S (6(S) 0 <1(S,s)) = 1 (2 ) 

and where the V-set function, 6', after a transition is given by: 

6': S + V = (3 ) 

Because e distributes over ~ we can show that the normalization of equn.l is 
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preserved under equn.3 provided equn.2 holds. 

For the four cases discussed 0 is arithmetic x (multiplication) when ~ is 
arithmetic + (deterministic and stochastic), and 8 is Boolean 'AND', or the fuzzy 
equivalent 'MIN', when $ is 'OR' ('MAX') (fuzzy and non-deterministic). 

2.7 Comparisons and Contrasts 

The previous sections have been phrased to bring out the similarities and 
differences between the four structures considered. Note that the normalization 
condition is uniformly that of equn.l, and the truth sets are either the entire 
interval, [0,1], or its boundary points, {O,l}, whilst the transitions are 
uniformly represented by equns.3 and 2. A table of operators against truth sets: 

Truth set 

+ 

{a ,l} I [O,lJ 

I D~-~erministic .- - - +-_. Stoc~astic x 

OR Non-deterministic Fuzzy AND 

Table I Relations Between Truth Sets and Operators 
for the Standard Spectra of Automata 

shows that the four cases analysed encompass a complete set of variations for these 
truth sets and operators. This is intuitively satisfying because it gives a 
closure over those automata which have been most extensively studied in the past. 
It is an answer in this context to the question of whether we can continually invent 
new forms of automaton. 

2.7.1 Fuzzy and Stochastic Automata 

The relationships expressed in Table I between fuzzy, non-deterministic and 
deterministic automata, and between stochastic and deterministic automata, are well­
known. However, that between stochastic and fuzzy automata is less obvious and it 
is worth discussing whether this is just a mathematical formality or whether it has 
a semantic content. Clearly the common use of the interval [O,lJ corresponds to 
quite different interpretations of the values within it - a "degree of membership" 
appears as a far less precise concept than a "probability". Equally the operators, 
t and x, appear little related to MAX and MIN. However, the following argument 
demonstrates a closer correspondence than might be expected. 

Consider two events, A and B, with respective probabilities of occurrence, 
PA and PB' If the two events are statistically independent then the probabilities 

of their conjunction and disjunction are: 

p(AI\B) 

p(A 1/ B) 

= 

= 

PA x PB 

PA + Ps - PAX Ps ( 5) 

Suppose, however, that A and B are not independent events but that one implies the 
other, A ~ B, say. Then we have: 
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p(A 1\ B) = 
p(A v B) = 

However, the direction of implication also gives us: 

p(A) ~ p(B) 

so that equns.6 and 7 may be re-written: 

p(A A B) 

p(A vB) 

= 

= 

MIN(PA' PB) 

MAX(PA' PB) 

Conversely, if the "fuzzy logic" conditions of equns.9 and 10 hold for two 
probabilistic events, then we have: 

p (A 1\ B) = M IN ( P (A ,.. B) + p (A AB), 

p(A 1\ B) + pO: ,. B» 

(6) 

(7 ) 

(8) 

(9) 

(la) 

(ll ) 

which implies that either p(A A B) = 0 or p(A A B) = 0, i.e. either A ~ B or 
B -.. A. 

Thus we see that the applicability of the fuzzy logic operations of equns. 
9 and 10 to determining the probabilities of conjunction and disjunction of two 
probabilistic variables is completely equivalent to their being a logical relation­
ship of implication between the variables. 

In principle therefore the fuzzy logic rules of [4J are reducible to a 
probabilistic logic in which all variables are connected by a chain of implication. 
The converse condition to that generally found useful in application of probability 
theory where one attempts to make variables statistically independent. The 
"chain" concept is intuitively significant - the MIN operation in fuzzy logic 
expressing that a chain is as weak as its weakest link - the MAX operation expressing 
that alternative chains in parallel are as strong as the strongest. 

These relationships between probabilistic and fuzzy logics indicate that 
Table I expresses more than mathematical formalism. Clearly the relationship 
demonstrated between fuzzy and probabilistic logics should also extend to the richer 
semantics developed by Zadeh in [9,10,11J. It would also be interesting for 
application studies to compare probabilistic and fuzzy logics in their relative 
efficacies for particular situations and relate this to the presence or absence of 
implications between the variables involved. 

In the next section we develop an argument for state specifications that go 
beyond those of the four so far discussed, and for automata over mixed state 
structures. The final section discusses the greatest generality beyond which our 
notion of a state-determined machine will not carry. 
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3 Automata Over Multi-Valued Logics of Possibility and Probability 

3.1 The Need for Further Automaton Structures 

Although section 2.7 gives a satisfying completeness result for the 
conventional spectrum of automata, it in no way implies the sufficiency of these 
structures to represent all possible cases of interest. That they are in fact 
inadequate is best seen by example, and we shall give one which is itself of 
particular interest in the context of calculi of possibility and probability, and 
of multi-valued logics. 

In our studies of system stability and control we have been very concerned 
to embody in our formulation the distinction between possible events that may not 
~ and possible events that are guaranteed to occur sooner or later. The 
former events correspond to problems that may arise and have to be avoided. They 
relate to regions of states which are reachable in terms of stability analysis but 
not reachable in terms of control. The second type of possible event, however, is 
responsive to feedback control since if the situation is continually recreated in 
which it may occur then it eventually will occur. 

Note that probability theory does not provide an explicatum of the first 
type of possible event. If for the purposes of analysing an uncertain system we 
assign an uncertain event a non-zero probability then we imply that not only may it 
occur but also, in a sequence of occurrences each of which may be that event, it 
eventually will occur with a probability arbitrarily near one. The notional 
assignment of a definite probability to an event also fails to provide an adequate 
explicatum of the second type of possible event because it has the stronger 
implication that the relative frequency of such events in a sequence will tend to 
converge to the given probability with increasing length of sequence. 

Either, or both of these connotations which probability has over possibility 
may be too strong in practical situations where the concepts of probability theory 
are being used to express the effects of uncertain behaviour. For example, we are 
often faced with situations where an event, E, may occur, but there is no guarantee 
that E actually will occur, no matter how long we wait. It we ascribe some 
arbitrary probability to E then we certainly express that it is a possible event. 
However we are in a position to derive totally unjustified results based on the 
certainty of some eventual occurrence of E, or meaningless numeric results based on 
the actual 'probability' of occurrence of E. 

A similar problem arises in the practical application of linear systems 
theory. There are many results which may be derived from the assumption of 
linearity (such as the complete extension of knowledge of local behaviour to that 
of global behaviour) which are false in most practical systems. The engineer 
resolves these problems in practice by using a set of 'rules-of-thumb' based on 
commonsense and experience to constrain the deductions he is prepared to make. 
Such a resolution is however extremely difficult to implement in an automated, or 
computer-aided, design system and becomes increasingly difficult to apply as the 
system involved becomes more complex. 

There is a danger on the one hand that results may be derived which have no 
iustification other than an unwarranted strength in the theory. For example, Gaines 
L16,17J that a two-state stochastic automaton can solve a class of control problems 
otherwise requiring a recursive automaton [18J and not soluble by any finite automaton 
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[16.18]. This powerful result is dependent on the source of uncertain behaviour 
being truly probabilistic. and cannot be derived if it is merely possibilistic. 
There is no way. however. of preventing the consequences of this result appearing 
in the analysis of a system in which uncertainties have been represented by 
probabilities rather than possibilities. 

On the other hand there is a danger that significant phenomena may be over­
looked because they cannot be distinguished from such spurious effects. For 
example, it is possible to derive deterministic results about the behaviour of 
automata whose transitions are indeterminate. Starting in S , the states of the 

o 
indeterminate automaton of Fig. 1 are indeterminate. However, it is clear that if 
the automaton is found to be in 54 it must have passed through S3. If we know that 

the transitions of this automaton are properly probabilistic then we may also 
conclude that its state will eventually be in the set (5 3 ,54 ). If, in addition, 

the transition probabilities are well-defined, we may also derive the expected time 
for this state set to be reached. These distinct forms of implication are 
confounded if we merely represent the indeterminate transitions as probabilistic in 
all cases. 

Figure 1 An indeterminate automaton 

3.2 Explicata of Uncertainty 

It appears that there are three distinct explicata of uncertainty, each of 
which has its own consequences that need clear separation: 

(I) Possible Event E is possible - no reliance may be placed upon the occurrence 
or the non-occurrence of E. This corresponds to an interpretation of E as an event 
whose negative consequences must be taken into account, but whose positive conse­
quences must not. Conventional probability theory provides no explicatum of this 
concept. 

(11) Frequent 
sequences, that 

EM = E, i.e. E 

Event E is frequent in the sense of the theory of infinite 
in a sequence of events, E., for any N, there exists M > N, such that 

1. 

occurs 'frequently' in the sequence E.. This corresponds to the 
1. 

interpretation of E as an event whose eventual occurrence may be relied upon, but 
whose relative frequence of occurrence is not necessarily stable or known. A 
possible explicatum in probability theory is that p(E) > 0, the event if of non-zero 
probabili ty. 

(Ill) Probable Event E is frequent and its relative frequency of occurrence in a 
sequence of events converges to a definite value, p(E), its probability of occurrence. 

It is clear that, in terms of our classification in the previous section, 
case I may be represented in terms of the non-determinate automata, and case III in 
terms of stochastic automata, with case 11 possibly being represented in terms of 
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stochastic automata with properly probabilistic transition of unknown value. We 
needed, however, to encompass the cases of mixed transitions, typically situations 
where certain types of possible behaviour could be guaranteed but other types 
could not. In the following section a suitable formulation for the mixed case is 
developed. 

3.3 A Logic of Possibility and Probability 

Let us take the truth set, V, to consist of the semi-open interval, R - (O,lJ, 
and the elements, N, F, P, I, whose interpretation is: 

N - Necessary occurrence - probability equals unity. 

F - Frequent occurrence - probability unknown. 

P - Possible - cannot say that it will not occur. 

I - Impossible - cannot occur. 

A truth value in R is a known probability of occurrence which is not zero. We 
shall say an event is of type R if its truth value is in R and will write R:p, where 
p is its probability, to emphasize this. 

The 6 operator over V corresponds to two different routes arr~v~ng at the 
same state - what can we say if we know either x or y is true. A truth table for ~ 
is given in table 11. The 0 operator over V corresponds to a state fOllowed by a 
transition - what can we say if we know that y follows x. A truth table for 0 is 
given in table Ill. 

TABLE II 

!l N F R:r P I 

N N N N N N 

F N F F F F 

R:r' N F R:r+r' F R:r' 

p N F F P P 

I N F R: P I 

TABLE III 

e N F R:r P I 
-- ------ -- --- . . -- -- -

N N F R:r P I 

F F F F P I 

R:r' R:r' F R:rr' P I 

p p p p P I 

I I I I I I 
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Consider first the structure with R taken as a single logic variable, i.e. 
V = {N,F,R,P,I}, which allows for all the explicata of uncertainty developed in 
section 3.2 Note that, without R, the tables for $ and e are simply those of a 
4-value Post logic, and hence can be mapped onto a fuzzy logic. R, however, 
behaves anomalously in that R~P = F whereas Rep = P. It has been suggested by 
Brown that the V-set of a fuzzy logic be taken to be a distributive lattice [19J. 
However the interaction of Rand P is inconsistent with ~ and 8 being lattice 
operations. This is a concrete example of the need for more general truth sets 
discussed by Goguen [6]. 

If we now consider the full truth set as first specified in which R is 
actually a semi-open interval, then the logic is now a mixed continuous discrete 
structure which can, however, still be neatly represented in the 'truth tables'. 
Such structures are both theoretically interesting and practically necessary to 
obtain rich enough explicata of the behaviour of uncertain systems. 

It will be noted that the diagonals of the two tables show the idempotency 
of the elements, and the wider significance of this may be raised. However, the 
individual elements of R are clearly not idempotent in general (p+p * p, and 
pxp # p, in general), and if we consider a variant on F, such as G interpreted as 
'properly probabilistic' (unknown probability in the open interval, (0,1», then 
idempotency can be seen to fail even for a discrete element (G~G = F). 

4 Possible Automata 

4.1 Semirings 

We have noted that the truth set need not be a fuzzy set or a distributive 
lattice, and that the elements need not be idempotents under ~ or e. In the 
example of the previous section it can be seen that i and 8 are both associative 
and commutative and that G distributes over t, i.e. together they give the truth 
set the structure of a commutative semiring. It is also apparent that this 
semiring is positive [19, p.12S] in that if we consider the zero element (I in 
Tables 11 and Ill) then: 

a $ b = I + a = I = b (12) 

and: 

a 0 b = I + a = I or b = I (13) 

In this example we have shown that a stronger structure would be too 
restrictive. However, the question remains of whether a positive commutative 
semiring is still too strong a structure on which to base automata theory. The 
following notes outline arguments to show on fundamental, and intuitively 
satisfying, grounds that at least an ordered semiring is necessary. 

first consider the operator, ~, which represents the combination of 
different trajectories to the same state. Trajectories may be combined in pairs 
so that this gives the truth set the structure of a partial groupoid (partial 
because some pairs of values may not arise and hence their result is undefined, e.g. 
probabilities of land 1). However, we must also take into account the independ­
ence of trajectories, that they represent alternative paths and there should be no 
effect of order or grouping when combining them. This implies that ~ is necessarily 
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commutative and associative, and hence defines a partial commutative semigroup over 
the truth set (it may be taken as a partial monoid by adding the null trajectory as 
an identity element). We may drop the term "partial" in general by noting that 
the "don't care" conditions can always be fitted in to complete the monoid. 

Even these constraints do not fully represent the necessary structure since 
each trajectory terminating in a state can only add to our knowledge about the 
automaton being in that state. There can be no-cancellation of information 
obtained by considering independent trajectories. One possible expression of this 
is to require the mono id to be positive, so that: 

V atb e:: V, a e b = 0 ~ a = 0 = b 

where 0 is the identity element of the monoid written additively. 
be seen (by adding a or b to each side of the left equn. of (14)) 
elements of the monoid are idempotent (14) automatically holds. 
implies the natural order on the monoid is a semi-lattice. That 
relation, ~, on V in terms of ~: 

V a ,b e:: V, 

(14 ) 

It can readily 
that if the 
Idempotency also 
is defining a 

(15) 

Unfortunately the positivity condition of (14) alone does not guarantee 
that this is even a partial order, and it seems that the best statement of the 
constraint upon the monoid is that the natural pre-order on it defined by (15) is 
actually a partial order. This itself implies that the monoid is positive and is 
implied if the elements are idempotent. Intuitively, this order relation 
corresponds to our having two independent sources of information about a state 
which cannot cancel - taken together they must give at least as much information as 
either alone. 

The operator @ presents more interesting problems since it represents the 
interaction between states and transitions, and there is no a priori reason to 
suppose that they can be expressed in the same language. Let us start with the 
more general assumption that the transitions are drawn from a set of functions, 
F = if: V + V}. Considering the same argument as for e, it can be seen that the 
result of applying a function to each individual trajectory separately (and then 
combining them) must be the same as applying it to them already combined - i.e. the 
functions must distribute over ~: 

v f E F, a,b E V, (a e b)f = (af) ~ (bf) (16) 

The implications of distributivity are not intuitively obvious and they may 
be expressed more meaningfully in terms of the order relation of (15), since (16) 
shows that f must be isotone with respect to~. Again we may argue that a 
transition cannot in itself increase information about a state so that f must be 
isotone non-increasing (this also makes it a residuated mapping in the sense of [21J). 

The isotone non-increasing mappings over the truth set clearly form a semi­
group which can be extended to be a semiring by the definitions: 

v f,g,h e:: F, h=fGlg ~Vae::V, ah = afg (17) 

and: 

v f,g,h e: F, h=f@g 4!SYVae:V, ah = af ~ ag (18) 
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The partial order defined by (15) has a natural extension to F in terms of (18) 
and this in turn implies that F under $ and 0 is a positive semiring [20J. There 
are a number of possible injections of V into F such that: 

af = a (i) f (19 ) 

and hence the entire structure of the monoid and its relevant endomorphisms may be 
represented in terms of a positive semiring. 

It will be noted that the examples given previously are such that e is 
commutative whereas no informal arguments have been put forward here to suggest 
that this is true in general. It is easy enough to generate simple structures in 
which 0 is not commutative but all our other requirements are satisfied. We have 
yet to find a semantics for such structure to show that they are necessary. 
Conversely there appears to be no argument on the lines of those advanced to 
suggest that such a semantics is not possible. 

4.2 The Role of Idempotency 

If one accepts the informal arguments of the previous section in terms of 
the monoid over V representing "information" about the automaton being in a state 
then it would be natural to assume that its elements were idempotents, i.e. that 
getting the lIsame 11 information a second time contributed nothing extra. Only the 
probabilistic case gives a counter-example, and here the "information" is a value 
rather than a datum. 

Suppose however that instead of considering the probabilities themselves 
one considers the underlying Borel set structure of the a-algebra for the probab­
ili ties. Then the "information" consists of disjoint sub-sets whose measures 
correspond to the probabilities and if ~ is regarded as the union operation on the 
sub-sets it is, of course, idempotent. 

In this case our semiring becomes a lattice, as it was for all the non­
probabilistic examples given. Thus it might well be that an intuitively satisfying 
axiomatization of automata theory could lead to the stronger structure of a lattice, 
rather than a semiring, providing one is prepared to carry the full structure of a 
measure algebra when carrying results over to probabilistic automata. 

This suggestion throws further light on the relationship between fuzzy and 
probabilistic automata. The normalization conditions are the same in that the 
joins of the truth values for all the states should be units, but the fuzzy truth 
values must form a linearly-ordered chain (a "vertical" section), whereas the 
probabilistic truth values must form a totally unordered set (a "horizontal" 
section) whose meets are zero. 

5 Conclusions 

This paper is exploratory and intended to 'open up' certain aspects of 
automata theory and of the logic of uncertainty. We have been concerned to stay 
close to the semantic roots of these topics and avoid over-emphasis on mathematical 
formalism. Automata theory to a large extent, and probability theory to a lesser 
extent, have evolved pragmatically with new constructs being introduced to satisfy 
new requirements. It seems appropriate now to return to fundamentals and examine 

194 



the minimum underlying sub-structure common to all our concepts of automata and 
uncertainty. Goguen [6J has given an extremely clear and coherent account of the 
logic of uncertainty in category-theoretic terms. The present paper may be seen 
as a further exploration within the same framework, illustrating on one hand the 
need for the systems within that framework that go outside the conventional 
spectrum of automata, and on the other hand defining the boundaries of that frame­
work beyond which the basic connotations of a structure being an automaton are lost. 

6 
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