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Stochastic automata have been shown to require less states than deterministic automata in the solution of
certain recognition and hypothesis-testing problems. This letter extends the result to a class of control
problems involving the regulation of a discrete dynamical system.

One of the major properties of stochastic machines is that they offer the possibility of memory
savings over equivalent deterministic machines. Rabin (1963, theorem 4) has shown that there
are regular events accepted by a 2-state stochastic automaton which are only accepted by a
deterministic automaton with an arbitrarily large number of states. Gaines (1969) has shown that
there are discriminations which cannot be learnt by an adaptive-threshold-logic element with
discrete bounded weights, unless the weight changes are non-deterministic. Hellman and Cover
(1971) have shown that, for deterministic automata of arbitrary size, there exist hypothesis-
testing problems which they cannot solve, but for which a 2-state stochastic automaton has an
arbitrarily small error.

The present letter extends the class of problems for which stochastic behaviour is known to be
advantageous by obtaining a similar result for certain abstract regulatory control problems. We
shall consider an abstract formulation of the problem of regulating a discrete dynamical system
to maintain its state within a prescribed region. Consider the finite automaton (/, P, S, o, ),
where [ is a finite set of inputs, P = (0,1) is a binary set of possible outputs, S is a finite set of
states, 0 :S'x [ — § is the next-state function, and m:S — P is the output function. & is to be
regarded as a performance function, since we shall consider the problem of regulating the inputs
to the automaton to cause its output to become, and remain, 1.

Suppose that there is some distinguished element AE/ (the 'zero' input for the autonomous
system), and consider the sets of states:-

W= {s:n(s)= 1}
A= {v:Vn = 0,0'(S, A )E W}

B= {9: EIn:G(s,A”)EA}

W is the subset of S in which it is desired that the state should reside, 4 is a weak attractor within
W, and B is its region of attraction (Bhatia and Szego, 1967). We shall assume that both B and S-
B are non-empty, so that the autonomous system has a region of local asymptotic stability but is
not asymptotically stable in the large, and consider the family of control automata, whose inputs
are from P and whose outputs are in 1, which induce global stability. For this family to exist, it is
necessary that B be reachable (Arbib, 1965) from S, i.e.:-
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where F, is the free semigroup generated by /.



Consider, as a regulator for the dynamical system (plant), the 2-state stochastic automaton whose
states are. ay and a;, whose inputs are from P, whose outputs are in /, whose state transitions are
determined by the following table of probabilities that the next state will be a;:-

Previous
state

Input 0 1

ag 0.5 0.5
a; 0.0 1.0

and whose output is A in state a; and randomly chosen uniformly from 7 when in state a,. If the
automata are coupled, it is clear that the condition in which the state of the plant is within 4 and
that of the stochastic regulator is a; is a stable one. However, there is finite probability of
attaining this condition from any other of the coupled automata, and hence the probability of the
automata being in this condition tends to unity; we may say that the coupled system is
stochastically asymptotically stable in the large (Kushner, 1967).

Consider now the regulator to be an arbitrary deterministic automaton with #» states (P, [, S, o,
m.), with inputs from P, outputs in /, a state set S., a next-state function o.:S, x P— S, , and an
output function 7 :5, — /. Suppose now that the plant is such that there is a 1:1 mapping
n:S, — S, which is not onto in that S has n + | elements so that there is one state of the plant, a
say, which is not the image of any element of S.. Suppose also that the next-state function of the
plant is selected to be such that:-

Vs, €S VieLa (. )i} Z{O(S 0)fi=(s.)

otherwise
Vi El,a(a,i) =a
The output function is selected to be such that:-

ls=a

0 otherwise

vses Jt(s)={

and that, if the initial state of the regulator is s., the initial state of the plant is chosen to be 1(S,).

This type of plant will be termed a 'frustration automaton' for the deterministic regulator, in that
it ensures that the plant output remains zero when coupled to the regulator, while also satistying
the reachability criterion for global stability to be possible with the stochastic regulator. Indeed
the plant is such that any control policy other than that of the regulator in use ensures global
stability!

Having established the existence of a frustration automaton for a regulator of known initial state
and structure, it is immediately possible to generalise the result to. show that an automaton exists
which is a universal frustration automaton for all deterministic regulators with » states or less.
The plant will have an initial transient in which its output is zero and in which it performs state
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and structure identification experiments (Moore, 1956). These are trivial in that the input of the
regulator (output of plant) is to be maintained zero for all time, and hence the behaviour of the
regulator will be cyclic with period less than or equal to n. The plant will then assume the form
of a frustration automaton for the particular regulator which it has identified.

An explicit construction of such a universal frustration automaton for regulators with n or less
states is as follows. Let the plant be connected to the regulator at time t = 0, and let the output of
the regulator at time t = 1 be R(i), while the output of the plant is P(i) (i = I, 2, 3, ...). Let the
output of the plant be defined to be:-

0 l<i<2n
P(i)=dP(i-1)i>2n and R(i)= R(m-n+i)
1 otherwise

where m = 0 is defined to be the minimum integer such that:-
Rn+i)=Rm+1i) (l1<si=<n)

Such an m must exist in the range 0 < m < n, since the regulator is driven by a constant input of 0
and hence its output must become periodic after a time of at most 7.

This plant can be realised as a finite-state deterministic machine (it need only remember the last
2n outputs of the regulator), and its overall behaviour is to identify the regulator over a period of
2n and then switch its output to 1 if and only if the output of the regulator once deviates from its
identified cycle. In these terms, the success of the stochastic regulator in dealing with the same
plant may be seen to be due to the inherent acyclicity, or unpredictability, of its output.

Thus we have the result that there exists for any #n, a discrete dynamical system which cannot be
regulated by any deterministic automaton with » states or less, whereas it can be (stochastically)
regulated by a stochastic automaton with two states.
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