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1. What is a fuzzy logic? 
One aspect of the tremendous growth of interest in 
fuzzy systems and fuzzy reasoning [1, 2] is the 
development of fuzzy logics [3-12] and their rela­
tionships [11, 12] to standard multivalued logics 
(MVLs) [13]. I have noted previously [12] the 
varying usage of the term 'fuzzy logic' which may 
be classified in three broad categories: 

(a) A basis for reasoning with vague statements. 
This general definition is consistent with the collo­
quial meaning of 'fuzzy', and also with its use in a 
technical sense different from, but related to [14, 
15] that of Zadeh's 'fuzzy sets theory'. 

(b) A basis for reasoning with vague statements 
using fuzzy set theory for the fuzzzYication of 
logical structures. This restricted form of (a) seems 
closest to Zadeh's own usage of the term 'fuzzy 
logic' [3] and his general use of the term 'fuzzy' as 
a qualifier. 

(c) A multivalued logz'c in which truth values are in 
the interval (O, 1 J and the valuation of a disjunc­
tion is the maximum of the disjuncts, whilst that 
of a conjunction zs the minimum of the conjuncts. 
This narrow definition encompasses the population 
stereotype of a 'fuzzy logic' [4-9]. It is interesting 
that most infinitely-v~ued MVLs [13] have 
min/max connectives for conjunction/disjunction 
and hence are 'fuzzy logics' on this definition, 
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One may note some scope for confusion between 
these three definitions because: 

(i) There is some disagreement about the basic 
conjunction/disjunction connectives of fuzzy logic 
[8, 9], i.e. neither (b) and (c) are necessarily 
accepted; 

(ii) even if the min/max connectives of fuzzy 
logic are accepted in the sense of (c), the further 
connectives of equivalence/implication/negation are 
left undefined [7], or defined [3, 4, 5] or assumed 
[6], in different forms; 

(iii) fuzzification of the classical propositional 
calculus (PC) in the sense of (b) gives a fuzzy logic 
in the sense of (c) but one with an inappropriate 
form of implication [10, 12,6] in which the 
assertion of A -:JB does not necessitate the degree of 
membership of B being greater than that of A ; 

(iv) for his models of truth values in human 
verbal reasoning Zadeh [3] fuzzifies in terms of (b) 
Lukasiewicz infinitely-valued logic [13] (here abbre­
viated to L 1), a logic which is itself a 'fuzzy logic' 
in the sense of (c). 

There is no sense in which one would wish to 
legislate in favor of one of the three defintions-all 
are appropriate in their proper contexts. However, 
one may also note that at the level of definition (a), 
there has been much previous work on practical 
reasoning with vague data under the auspices of 
probability theory. I have previously suggested 
[10-12] both formal and semantic links betw~en 
fuzzy and probability logics that provide foundation 



for a general log£c of uncerta£nty encompassing 
these logics, many classical MVLs, and some modal 
logics. 

The foUowing section briefly presents such a 
logic of uncertainty, a general fuzzy logic, or a 
bas£c probabil£ty logic as I have previously termed 
it. Section 3 elucidates the effects of imposing the 
constraint of definition (c) upon the logic, and 
Section 4 gives a semantics for the general logic 
which illuminates the formal relationship between 
fuzzy and probability logics. 

2. A general logic of uncertainty 
To integrate together the various logics of uncertain­
ty, including fuzzy and probability logics, it is 
essential to make a clear initial distinction between 
the (algebraic) structure of propositions and the 
ascription to these propositions to truth values 
(making them into statements). Indeed, it will be 
shown that fuzzy logics may be uniquely distin­
guished from other logics of uncertainty by the 
irrelevance, only in their case, of propositional 
structures when assigning truth values to compound 
statements. 

The natural and conventional algebraic semantics 
for a propositional calculus is a lattice structure: 

L(X, F, T, v, 11), generated by a set of elements, 
X, under two (idempotent, commutative) mono id 
operations, v (disjunction), A (conjunction), with 
maximum element, T, and minimum element, F, 
i.e. L satisfies: 

It xfL x v x XAX=x (1) 

It x, Y € L x v Y Y v x, X 11 Y = Y A x (2) 

It x,y,z € L x v (y v z) = (x v y) v Z, X A (y A z) 

= (x lIy) I1Z (3) 

tt x,y € L x A (x V y) = x, X 11 (x 11 y) = x (4) 

It x€L x v F == x, X A F = F, x v T 

';T,xI1T=X (5 ) 

the idempotent, commutative, associative, and 
adsorption postulates, together with a definition of 
the minimal and maximal elements [16]. The usual 
order relation is also defined: 

It x,y f L 
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x ~ y ~ :I Z € L : y = x I( Z (6) 

It is possible to make a case for weaker structures 
(e.g. dropping idempotency) but, for present pur­
poses, this will be taken as an unreasonably wide 
generalization of our concepts of conjunction and 
disjunction. Now suppose that every element of L 
is assigned a 'truth-value' (for different applications 
different terminologies might be more appropriate, 
'probability', 'degree of knowledge', 'level of belief', 
etc.) in the closed interval, [0, 1] by a continuous, 
order-preserving function p: L "'* [0, 1}. with the 
constraints: 

p(F) = 0, p(T) = 1 (7) 

It x, Y € L, p(x v y) + p(x AY) = p(x) + pry) (8) 

i.e. p is a continuous, order-preserving, valuation [16] 
on 1. Note that, for p to exist, the lattice must be 
modular, and that we have: 

p(x 11 y) min(p(x),p(y)) ~ max(p(x),p(y)) 

~p(xvy) (9) 

To complete the definition of an MVL one needs 
values for equivalence, implication, ::J, and nega-
tion, ~ of propositions. These may be defined 
naturally by noting that the equivalence relation on 
L, ==, defined by: 

x == y ~ p( x v y) == p( X 11 y) (10) 

is a congruence on L, and that the deviation from 
equality in (10) defines a metrlc on L under this 
congruence [16J. Hence it is reasonable to define: 

p( x == y) = 1 - p( x V y) + p( x 11 y) (ll) 

as a measure of the degree of equivalence between 
x and y. 

Implication may be defined in terms of equiv­
alence by noting that, according to the usual lattice 
semantics, we require: 

It x, y e L, x y ~ p( x ::J y) 1 (12) 

but that for x, y satisfying this we have: x v y y, 
X 11 Y = x. Thus it is natural to define implication 
as the degree to which these equivalences hold: 
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p(x =>y) =p((x vy)==y) =l-p(x vy) +p(y) 

= l-p(x) + p(x v y) = p((x v y) == x) 

( 13) 

Negation may also be defined in terms of equivalence 
in the usual way: 

pr-x) = p(x == F) = p(x => F) = l-p(x) (14) 

I have previously called the logic thus defined a 
basic probability logic (BPL) because it satisfies the 
usual definitions of a probability logic (PL) [13], or 
probability over a language [17], except for the law 
of the excluded middle (LEM). In a BPL the law of 
contradiction and LEM are not necessarily theses, 
but if one is then so is the other, i.e. we have (from 
(8) and (14)): 

p(x v -x) + p(x J1 -x) = 1 (15) 

so that: p(x V -x) = 1 -# p(x 11 -x) = 0 (16) 

The form of implication in a BPL has the pro­
perty, from (13), that: 

pry) = p(x V y) - 1 +p(x => y) ~ p(x)-

-(l-p(x=>y)) (17) 

which enables a lower bound to be placed on the 
truth value of y given those of x and x => y. Thus 
it satisfies the normal requirement [5, 6] that the 
assertion of x => y may be used to infer that 
pry) ~ p(x), and hence also that pry) ~ max(p(xi)) 
where y is constrained by 'rules' of the form 
xi => y, a common pattern of inference in applica­
tions of fuzzy reasoning [18]. 

3. Truth functionality in BPLs 
A BPL is not truth-functional (TF) in that the 
truth-values of the binary connectives, conjunction/ 
disjunction/equivalence/implication, are not uniquely 
defined in terms of those of the two connected 
propositions. Note, that there is only one degree of 
freedom in that fixing the value of any of these 
connectives fixes that of all of them. There have 
been many debates in philosophical logic about 
truth-functionality but, particularly in the context 
of a logic of uncertainty, there seems to be no 
fundamental basis on which to demand truth-
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functionality, quite the contrary. However, a great 
deal may be learned, and many interesting logics 
derived, by considering various ways in which a 
BPL may be made TF: 

(i) A BPL with binary truth values is precisely PC. 
lf the truth values in a BPL are restricted to the 
end points of [0, 1] then it becomes TF with truth 
tables for all the connectives precisely as in the 
classical propositional calculus. Thus a BPL, and all 
its derivatives, are proper extensions of PC. 

(ii) A strongly truth-functional BPL is the 'fuzzy 
log£c' L1 . I have called a logic strongly TF [12] 

if there is a single equational definition for each of 
its binary connectives giving their truth values in 
terms of those of the connected propositions 
regardless of the propositional structures (e.g. having 
generating elements in common). The arguments of 
Bellman and Giertz [7] may be used to show that a 
strongly TF BPL is necessarily a 'fuzzy logic' (in 
sense (c) of Section I). with the min/max bounds 
of (a) being attained. 

Thus a fuzzy logic is a limiting case of a BPL and 
has the important computational property of allow­
ing one to drop, without loss of information, the 
propositional structure of a statement and retain 
only its truth value. This property also holds for PC 
and hence it is a natural assumption in an MVL. 
However, its very strength is also its weakness 
because it implies that for any two statements, x 
and y, either p(x => y)=l, or pry => x)=l, i.e. the 
lattice, L, reduces to a chain of propositions mutually 
connected by implication. This very strong require­
ment is unlikely in general, although there are situa­
tions in which it becomes a reasonable hypothesis 
(see Section 4). 

(iii) A BPL with LEM is Rescher's probability logic. 
Adding the law of the excluded middle (and hence 
also the law of contradiction) to a BPL gives a 
classical probability logic [13]. The PL is still not 
truth-functional but the demand for LEM makes it 
impossible for it to be strongly TF. In many practi­
cal cases the semantics require LEM and one is led 
to consider weaker forms of truth-functionality in 
which the computation of truth values of the binary 
connectives requires both the values and the propos­
itional structure of the connected propositions: 

(iv) A BPL with LEM may be made truth-functional 
by an equatz"onal definition of the connectives 
for conjunction or disjunction wht"ch is commu-



tative, associative and such that LEM or the law 
of contradiction applies, and is applied to pairs 
of propositions with no common elements. Notice 

that it is now essential to retain propositional struc­
tures in order to use the lattice laws and definition 
of a valuation to evaluate connectives in terms of 
pairs of components that have no common element. 
However, the resultant logics can now be made 
consistent with a far wider range of semantics, 
essentially now applying to the generating set of 
basic propositions, X, e.g.: 

(v) Assuming the truth-value of conjunction in X is 
the minimum of the truth-values of the con­
juncts gives a 'fuzzy logic' in which the truth­
value of a disjunction in X is the maximum of 
those of the disjuncts. Thus min/max connect-

ives are not incompatible with LEM. They imply 
that the generating propositions form a chain but 
that their negations form a separate chain, thus 
enabling LEM to apply. 

(vi) Assuming the truth-value of conjunction in X 
is the product of the truth-values of the con­
juncts gives a logic of statistical independence. 

Thus is the common assumption made by system 
analysts and engineers in order to make an uncer­
tain system truth-functional. 

(vii) Assuming the truth-value of disjunction in X 
is the sum of the truth-values of the disjuncts 

gives a logic of mutual exclusion. This is 
another common assumption, justified when the 
generating elements represent events, such as being 
in different states, that cannot occur together. 

Thus a BPL may be made TF in a variety of 
ways of which only a few 'pure' examples have 
been given. In practice different propositions in the 
generating set may be connected in different ways 
and it makes more sense to reverse the definitions 
and consider which propositions are mutually exclu­
sive, statistically independent, fuzzily related, etc., 
i.e. to classify the structure of the particular pro­
positional calculus encountered in each practical 
situation. This concept will be further clarified in 
the semantic examples of the next section. 

4. Semantics for BPLs 
The close relationship established in Sections 2 and 
3 between fuzzy and probability logics may evoke 
suspicion since we know that in many applications 
a fuzzy 'degree of membership' is most definitely 
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not associated with a (physical) probability. For 
example, the man who has a degree of membership 
(dm) .5 to the class of short men or the woman 
who has dm .7 to the class of beautiful woman do 
not necessarily represent samples from a population 
(they may be the only people). Neither is there a 
sampling distribution in our own measurements that 
makes the man appear smaller than 5 feet on 50% 
of the occasions we measure his height-indeed, for 
beauty we possess no physical measuring rule! 

Thus the formal relationship of probability theory 
to fuzzy logic may appear as spurious. However, 
this would be to adopt too narrow a view of 
probability theory, taking a strict 'physical frequen­
tist' interpretation when there are well-established 
alternative semantics for probability in terms of 
'subjective probability' [19-21], 'belief' [22, 23], 
etc., that are closely related to both classical and 
computational-complexity-based probability [24, 
25] . There is a common semantics for all these 
interpretations of a BPL in terms of the binary 
responses of a population that shows that the 
formal relationships established are more than a 
mathematical artifice. 

Consider a population each member of which 
can 'respond' to certain questions with a binary, 
yes or no, reply. The forms of question will involve 
evaluating a statement which belongs to the 
generating set, X, of a lattice, L, as defined in 
Section 2. For example, 'is this statement, x EX, 
true or false, or reasonable or unreasonable, or 
generally believed, etc.'. The valuation of x is 
defined to be the proportion of the population 
replying yes to the question. A compound statement 
in L is given a valuation in terms of the proportion 
of the population who say yes to each of x and y 
for terms of the form, x 11 y, or who say yes to 
either x or y for terms of the form, x v y, and 
similarly for more complex combinations of con­
junction and disjunction. 

This is essentially a set-theoretic model for L as a 
lattice of sub-sets of the population and (1) through 
(10) are clearly valid. A distance measure and hence 
valuations of logical equivalence, implication, and 
negation, may be defined as in (11) through (14). 
Thus, for any given population whose members are 
able to give one of two responses to a question 
about each element of X, there is a simple and 
well-defined procedure for ascertaining the valuation 
of any arbitrary statement in L, involving, conjunc­
tion, disjunction, equivalence, implication and nega­
tion, which is consistent with (1) through (14). 
Thus such a population is a model for a (distributive) 
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BPL. 
Returning to the initial examples, one may now 

suppose that 50% of some test 'population' agree 
that the man is 'short' whilst 70% agree that the 
woman is 'beautiful'. If the 'population' was one of 
measuring instruments then the results express the 
effects of physical 'noise'. If the 'population' is 
one of people then this is a social acceptance model 
of linguistic usage, a reasonable model of Zadeh's 
'fuzzy reasoning' based on human linguistic beha­
vior. If the 'population' is one of 'neurons' then 
this is a model of individual decision-making. If we 
allow metalinguistic statements about the value of 
p(x) to be made by members of the population 
then this is a model of 'subjective probability' or 
'belief', and so on. 

Consider now the additional constraints that 
must be placed upon the behavior of the population 
to correspond to result (iii) and (ii) of Section 3. 
Rescher's probability logic is obtained if someone 
who says 'yes' to x must say 'no' to ""x. Lukasie­
wicz's L J is obtained if members of the population 
each evaluated the evidence for x in the same way 
but applied differing thresholds of acceptance. The 
member with the lowest threshold would then 
always respond with 'yes' when any other member 
did, and so on up the scale of thresholds, thus 
giving the required relation of implication between 
propositions. This model, although unusual, has its 
intuitive attractions, e.g. Reason [26] has shown 
that the threshold applied by human being in 
coming to a binary decision on an essentially analog 
variable seems to be associated with personality 
factors and a trait of the individual. If so, human 
populations would tend to show more a fuzzy, 
than a stochastic, logic in their decision making. 

Similarly populations showing the 'statistical 
independence' of (vi) or the 'mutual exclusion' of 
(vii) may be defined. However, rather than argue 
the case for one type of population or another, one 
can now envisage that logics based on a real popula­
tion will be of mixed type and hence it is more 
interesting to insert the concepts and talk in terms 
of a 'fuzzy', 'probabilistic', 'independence', 'exclu­
sion', etc. rela#onship between propositions. Such 
relationships are mainly of interest to the extent 
that they are necessary and hence would appear as 
modal operators over a family of possible p's or L. 
In terms of our example so far it seems unlikely 
that anyone would argue for the logical necessity 
of semantics that make it possible to compute the 
truth value of 'the man is short and the woman is 
beautiful' on a truth-functional basis. However there 
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would be reasonable grounds for the fuzzy TF of 
'the man is short and he is not heavy'. A BPL and 
associated population semantics can encompass all 
these possible variants on a general logic of uncer­
tainty. 

5. Conclusions 
In conclusion, there is no one logical system that 
stands out clearly as the logic of vagueness, uncer­
tainty or fuzzy reasoning. It has been shown that a 
non-functional basic probability logic provides a 
formal foundation for a general logic of uncertainty 
encompassing both fuzzy and probability logics. 
Classical probability logic is obtained by adding the 
law of the excluded middle. The fuzzy logic L J is 
obtained by demanding strong truth-functionality. 
Since both LEM and TF have been subject to 
philosophical debate over many centuries one is 
unlikely to choose between them on general grounds! 

However, it has also been shown that LEM is con­
sisten with weaker forms of TF leading to partially 
'fuzzy logics' (with min/max connectives between 
primitive propositions), logics of statistical inde­
pendence, mutual exclusion, etc. The 'population 
model' semantics given show that these formal rela­
tionships between various logics of uncertainty carry 
over to an intuitively satisfying model of uncertain 
reasoning. The model also clarifies the distinction 
between fuzzy 'degree of membership' and conven­
tional 'probability', showing it to be one of detailed 
semantic interpretation rather than one of logic or 
basic semantics. 

Finally, the characterization of fuzzy logic as 
bieng strongly TF highlights its unique computational 
advantages. They are not so much ones of numerical 
simplicity (of min/max operations) as ones that stem 
from the memory-reduction possible through the ir­
relevance of propositional structures when computing 
truth-values. In any other logic of uncertainty it is 
necessary to know the actual structure (in terms of 
primitive propositions in the generating set) of pro­
positions, x and y, when computing x 11 y, X ~ y, 
etc., whereas in fuzzy logz'c it £s necessary only to 
remember the truth values, p(x), p(y). Thus, regard­
less of whether fuzzy logic is correct in a given 
application, it is easy to apply, requiring a substan­
tially lower memory load in generating or following 
complex arguments. This is not only practically 
important but may also be very relevant to the role 
of fuzzy logic in modelling human reasoning where 
memory resources are notoriously weak. It may, 
for example, explain Edwards [27] results that 
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humans, whilst being good probability estimators, 
do not use the infonnation efficiently in Bayesian 
computations (requiring a logic of statistical inde­
pendence). A fuzzy logic is easier to apply, but is 
equivalent in this context to throwing away infor­
mation. 

Thus, the wider framework for logics of uncer­
tainty described in this chapter establishes a close 
link between fuzzy logic and probability theory, to 
the mutual advantage of both fields. It also makes 
clear the unique computational advantage of fuzzy 
logic derived from its strong truth-functionality. 
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