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This paper is concerned with the foundations of 
fuzzy reasoning and its relationships with other logics 
of uncertainty. The definitions of fuzzy logics are 
first examined and the role of fuzzification discussed. 
It is shown that fuzzification of PC gives a known 
multivalued logic but with inappropriate semantics of 
implication and various alternative forms of impli- 
cation are discussed. In the main section the 
discussion is broadened to other logics of uncertainty 
and it is argued that there are close links, both 
formal and semantic, between fuzzy logic and probab- 
ility logics. A basic multivalued logic is developed 
in terms of a truth function over a lattice of 
propositions that encompasses a wide range of logics 
of uncertainty. Various degrees of truth functionality 
are then defined and used to derive specific logics 
including probability logic and Lukasiewicz infinitely 
valued logic. Quantification and modal operators over 
the basic logic are introduced. Finally, a semantics 
for the basic logic is introduced in terms of a popu- 
lation (of events, or people, or neurons) and the 
semantic significance of the constraints giving rise to 
different logics is discussed. 

1 Introduction 

Since Zadeh's I introduction of fuzzy set theory 
some ten years ago there has been a steady growth of 
interest in this approach to an imprecise system 

• • 3 ° theory2; a recent blbllography lasts over 600 
references of which many are application studies of 
1974-75 vintage. Whilst this work is clearly related 
to past studies of multivalued logics and may be viewed 
as a logical continuation of many of the studies of 
the Polish logic school 4 of 1920-39, and the fuzzy 
models of linguistic hedges have obvious antecedents 
in modal studies of vague quantifiers 5 tense logics 6 
and language in general 7, in fact this'work did not so 
arise. It has its roots in the need in systems 
engineering 8-II to be able to cope formally with 
concepts such as stability, feedback, adaption, etc., 
that are widely applicable and conceptually powerful 
yet have an inherent vagueness that must be captured 
in any formalism that does not destroy their utility 
through excessive strictness in their definition. 

12 Sanford wryly remarks on how a branch of philoso- 
phical logic has become the province of engineers. 
However, it is the very need of systems engineering 13, 
both in its theoretical constructs and in the computer 
implementation of algorithms, that offers a new and 
interesting application area for this branch of 
philosophical logic. 

Whilst, in the long run, it is such applications 
of fuzzy reasoning that are of greatest interest, there 
are impediments to these in the short term that stem 
both from the novelty of the approach and from some 
lack of clarity in the foundations of fuzzy logic 14. 
For example: the implication function in fuzzy reason- 
ing has been left undefined 15 or defined 16-18, or 
assumed 19, in different forms; there are even differ- 
ences of opinion about the more basic logical connect- 
ivesl2'20; fuzzy reasoning is being applied to 
situations where probability theory would conventionally 
be applied and yet there is no formal theory of the 
relationship between the two approachesPl; and so on. 
No one would expect a new and rapidly developing 
subject area not to show inconsistencies, and it would 
be both unreasonable and unwise to attempt to remove 

them by the imposition of rigid definitions at too 
early a date. Nevertheless it seems appropriate to 
explore at this time the sources of inconsistency and 
the links with more formal developments and alter- 
native approaches with a view to strengthening and 
broadening the foundations of what appears to be a 
development of major importance for systems engineering. 

This paper is concerned with these problems, the 
foundations of fuzzy reasoning and its relationships 
with other logics of uncertainty. In section 2 the 
definition of a fuzzy logic is first examined and the 
role of fuzzification discussed. It is shown that the 
fuzzification of PC gives a known multivalued logic 
but with inappropriate semantics of implication, and 
various alternative forms of implication are discussed. 
Section 3 broadens the discussion to encompass other 
logics of uncertainty and argues that there is a close 
relationship between fuzzy and probability logics. A 
basic multivalued logic is then developed in terms of 
a truth function over a lattice of proposition that 
encompasses a wide range of logics of uncertainty. 
Various degrees of truth-functionality are then 
defined and used to derive specific logics including 
probability logic and Lukasiewicz infinitely valued 
logic. Quantification and modal operators over the 
basic logic are also discussed. Finally, in section 4 
a semantics for the basic logic in terms of a popu- 
lation (of events, or people, or neurons, etc.) is 
outlined and the semantic significance of the 
constraints discussed. 

2 Fuzzy Lo$ics 

2.1 What is (or are) Fuzzy Logic(s) and Fuzzy Reasoning? 

Zadeh I defined fuzzy sets and the operation of 
union, intersection and complementation on them. He did 
not then, and so far as I am aware, has not later, 
defined a "fuzzy logic" although his later papers on 
fuzzy reasoning 16"22 include the concept of fuzzified 
truth values in the infinitely valued Lukasiewicz logic 
(here abbreviated to Li). "Fuzzification" is a well- 
defined technique for extending a precise mathematical 
function in many variables to apply to fuzzily restricted, 
rather than precisely defined, values of the variables. 
Zadeh fuzzifies a variety of mathematical structures to 
provide more appropriate models of their use in the 
process of reasoning with vague data carried out, 
linguistically, by human beings. L 1 is only one example 
of a structure to be fuzzified and Zadeh does not treat 
the model of linguistic terms denoting truth such as 
"very true" any differently from terms denoting other~ 
less abstract, concepts such as "very high" or2~very hot". 
Indeed in two distinct journal publications II' he 
emphasizes "much of the logic behind human reasoning is 
not the traditional two-valued or even multivalued logic, 
but a logic with fuzzy truths, fuzzy connectives and 
fuzzy roles of inference". 

There has been a rich development of Zadeh's 
approach to fuzzy reasonin~ with vague concepts and many 

2,3,I4,24,25 important applications . However, work has 
also been carried out on "fuzzy logics" which are not 
those of Zadeh's "fuzzy reasoning" but are instead 
multivalued logics (MVLs) based on a natural analogy with 
fuzzy set theory in that the truth value of a conjunction 
is taken as the minimum of those of the conjuncts, and 
that of disjunction as the maximum of those of the 
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disjuncts. Such min/max connectives are common to 
virtually all of the truth-functional MVLs studied in 
the literature 26 and since, as noted previously, the 
fuzzy implication connective is variously defined, or 
left undefined, virtually any such MVL could be called 
a "fuzzy logic". 

Thus, there are at least three potential defin- 
itions of "fuzzy logic": 

(a) "A basis for reasoning with vague statements" - 
this very general definition is consistent with the 
colloquial use of the term "fuzzy" and its use in 
technical senses different from that of Zadeh 27, or in 
more general formulations 28,29. "Fuzzy" becomes a 
modern term replacing previous usage in the literature 
on measurement and philosophical logic of terms such as 
"inexact"30, 31 and "vague"°2, 33. It has the advantage 
of not being negative in its connotations, which itself 
is significant since one suspects that the study of 
uncertain reasoning would have developed more extensive- 
ly earlier without these connotations°4, 35. 

(b) "A basis for reasoning with vague statements using 
fuzzy set theory for the fuzzification of logical 
structures" - this more restricted form of definition 
(a) comes closest to being the intensive form of that 
given extensively by the contents of Zadeh's own papers. 

(c) "A multivalued logic in which truth values are in 
the interval [0,i], and the valuation of a disjunction 
is the maximum of those of the disjuncts, and that of a 
conjunction is the minimum of those of the conjuncts" - 
this is close to being the population stereotype of a 
fuzzy logic currently. It may be generalized to truth 
values in a lattice IB,36,37 or specialized to include 
the truth value of negation as being one minus the 
truth value of the statement negated. However, all 
variants of this definition require statements to have 
truth values in an ordered set, and define the logical 
connectives in terms of the order relation. 

There is scope for confusion in the level of 
discourse between definitions (b) and (c) because Zadeh 
fuzzifies in terms of (b) logics which are "fuzzy" in 
terms of (c). It would be better to use the term MVL, 
or "truth-functional MVL over an order relation" for 
the so called "fuzzy logics" of definition (c), and 
retain the adjective "fuzzy" as indicating any mathe- 
matical structure (including a MVL) that has been 
fuzzified. However, the state of the literature 
already makes such terminological exactitude a diffi- 
cult objective, and one has to accept the distinct uses 
of the term "fuzzy". 

In the next section I shall consider to what 
extent "fuzzy logics" in terms of definition (c) can be 
taken as fuzzifications of other logics in terms of 
definition (b). In the following section I shall 
consider the desirable properties of "fuzzy logics" in 
terms of definition (c) if they are to be the fuzzified 
"base logics" for fuzzy reasoning in terms of defin- 
itions (b) and (a). 

2.2 The Multivalued Lo$ic VSS as the Fuzzification of 
PC 

1 . 
Consider standard fuzzy set theory in which for 

any possible element, x, of a set A, the usual binary 
characteristic function A(x) is generalized to take 
any "degree of membership" in the closed unit interval, 
[0,i], rather than just its end points, and the degrees 
of membership for union and intersection of sets are 
given by: 

C = A~B + C(x) : min(A(x),B(x)) (2) 

Given these basic definitions it is possible to 
"fuzzify" any domain of mathematical reasoning based on 
set theory by assuming that variables do not take 
specific values but instead have a separate "degree of 
membership" to each possible value. That is, instead 
of having a sharp value, a variable is fuzzily 
restricted to a domain of values. The definition of 
the "value" of a function of many variables may now be 
extended to fuzzified variables in a natural way - if 
in the standard case y = f(xl,x2,...)~ and u(xl) is the 
degree of membership of a particular "value" to xl, 
then: 

[ m~x (min(u(xl),u(x2),...)) u(y) : (3) 

[0, if no x exists 

where x = (xl,x2,...) is any n-tuple such that 
y = f(xl,x2,...). That is: with each argument to the 
function is associated a degree of membership that is 
the lowest of those of each of its components; and 
with each value of the function is associated a degree 
of membership that is the highest of all the arguments 
resulting in that value. Note that fuzzification does 
not involve the complementation of a fuzzy set which is 
advantageous since this operation is not as well-defined 
as the union and intersection 15. 

In the same way that probability distributions are 
normalized to sum to unity and this is preserved under 
transformations, there is a natural normalization of the 
degrees of membership of a variable that is preserved 
under fuzzification. A fuzzy variable is said to be 
"normalized" if at least one value has a degree of 
membership of unity. It is readily seen that a function, 
fuzzified as in eqn.(3), of normalized variables is 
itself normalized (there must be at least one argument 
with degree of membership 1 and this will give a value 
with the same membership). 

Any logical structure may be fuzzified by consider- 
ing propositions to have degrees of membership to truth 
values. If we take the conventional propositional 
calculus (PC) with truth values 0 and i, then after 
fuzzification each statement, A, will be represented by 
a pair of values, (al,a2), representing its degree of 
membership to falsity and truth, respectively. For 
example, fuzzifying the truth table for implication, ~, 
in PC gives the following expression: 

If C =AraB 

then (ci,c2) = (min(a2,bl),max(min(al,bl), 
min(al,b2),min(a2,b2))) (4) 

Similar expressions may be derived for fuzzifying the 
truth tables of negation, ~, disjunction, v , conjunction, 
A, and equivalence, ~, but they are more meaningfully 
obtained by noting that fuzzification preserves the 
relations giving interdefinability of the connectives of 
PC. That is, if F is any false proposition (i.e. 
(fl,f2) = (i,O)), then we may write: 

~A for A ~ F (5) 

A v B for ~A m B (6) 

A A B for ~(~A v ~B) (7) 

A K B for (A = B) A (B ~ A) (8) 

C = AuB + C(x) = max(A(x),B(x)) (i) Eqn.(5), for example, when substituted in (4) gives 
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uS : 

If B : ~A 

then (bl,b2) = (a2,al) 

and, similarly, expressions may be derived for the 
other connectives. 

(9) 

If we assume the fuzzy variables are normalized 
then, as there is only one non-unity component, there 
is a I-i correspondence with the unit interval that 
simplifies the above expressions. Let: 

a = (l-al+a2)/2 (i0) 

and so on for the other variables (this transformation 
can be inverted given that one of al and a2 must be i). 
Then the equations for the logic operations become: 

C : A~ B ÷ c = max(l-a, b) (ii) 

B : ~A + b : l-a (12) 

C : A v B + c = max(a,b) (13) 

C = A A B ÷ c = min(a,b) (14) 

C : A ~ B ÷ c : min(max(l-a,b)max(l-b,a))(15) 

This system of equations gives a MVL that Rescher 26 
calls the infinitely valued form of a variant standard 
sequence (VSS) and attributes to Dienes 38 Thus normal- 
ized fuzzified PC is precisely Dienes VSS. Note that 
the connectives of equns.(12) through (14) are those 
assumed in papers on fuzzy logic and, particularly,that 
the l-a definition of negation arises naturally from 
PC and was not introduced as a fuzzy complement opera- 
tion. 

[._S Implication i_n the Base MVL for Fuzzy Reasoning 

The natural way that VSS arises through the fuzzi- 
fication of PC makes it attractive to consider this MVL 
as a basis for fuzzifying yet again to get Zadeh's model 
of hedged linguistic truth values 16. That is, one would 
consider linguistic truth values such as "true" or 
"very true" as having a separate degEee of membership 
to each truth value in the interval [O,i]. However, 
the implication function of VSS has a defect in that it 
does not allow the assertion of A B to be used to infer 
that b ~ a, i.e. the truth value of B is at least that 
of A. This defect was noted by Lee 19, who assumes a 
PC form of implication (A v B) in his "fuzzy logic", and 
also runs counter to the constraints on implication dis- 
cussed by Lee and Chang 17, and used in such practical 
applications as the fuzzy controller of Mamdani and 
Assilian 39. In such applications, rules of inference 
such as: if Ai then B or if A2 then B, etc., may be 
interpreted as: Ai~B, A2=B, etc., and used to infer in 
a particular instance that the truth value of B is at 
least equal to the maximum of all Ai, A2, etc. that 
imply B. 

If we require that the truth value of A~ B is 1 
iff b ~ a then this may be used to define a variant of 
VSS based on some subset of definitions (ii) through 
(15). To complete the definition of implication we 
must define the truth value of AmB when b < a. Three 
possible definitions are: 

C=A~B + 

C=ADB ÷ 

C :Am B ÷ 

c = 1 if b ~ a, c = b otherwise (16) 

c = 1 if b ~ a, c = b/a otherwise 
(with 0/0 taken as 
i) (17) 

c = 1 if b ~a, c = l-a+b 
otherwise (18) 

so that, when the implication is not absolute, the 
truth value is that of the implied proposition (equn. 
16), or (equn.17) it is the ratio between the two, or 
(equm.18) a function of the difference between the two. 
If we couple each of these definitions with (5) for 
negation, (8) for equivalence, (13) for disjunction 
and (14) for conjunction we obtain three distinct 
"fuzzy logics" that are related to important MVLs: equn. 
(16) gives Godel's infinitely valued logic 28 in which 
negation has the form - 

I 1 unless a = 1 
B = ~A ÷ b = 0 if a 1 (19) 

and is closely related to the intuitionistic proposit- 
ional calculus (IPC - it has same axioms with addition 
of (AmB) v (BOA)); equn.(17) gives another MVL with 
negation as in equn.(19), closely related to IPC and 
analysed by Goguenl8; and equn.(18) gives Lukasiewicz's 
infinitely valued logic 28 which has a negation of the 
form: 

B = "A ÷ b = l-a (20) 

the same as that of fuzzified PC (equn.12), and is that 
proposed by Zadeh 18 as a base logic for fuzzification 
as a model of linguistic truth values. 

Note that the procedure for inference from rules 
of the form AlP B, A2mB, etc., previously discussed is 
available in all three of these logics. The crucial 
difference really shows up only in the form of negation. 
The fuzzy complementation-like negation of equn.(20) is 
not as naturally determined 15 as the basic max/min 
connectives of disjunction/conjunction, and has prob- 
lematic semantics 40. The negation of equn.(19) has 
the IPC property that asserting the double negative of 
a proposition does not imply that proposition which is 
desirable in situations where inference is not possible 
from negative instances. All these logics (and some 
other MVLs) are suitable as base logics for fuzzifi- 
cation on models of fuzzy reasoning but will have 
differing semantics related to statements using "not" 
as a modifier. 

This section has classified the somewhat varied 
use of the term "fuzzy logic" and shown that there are 
various MVLs satisfying definition (c) and which can 
also act as base logics for fuzzification in terms of 
definition (b). In the following section I shall 
attempt to give an integrated approach that develops 
all these possibilities from a common foundation and, 
in particular, incorporates previous approaches to 
uncertainty and vagueness through probability logics. 

3 An Integrative Approach to Lo$ics of Vague 
Reasoning 

The type of technical discussidn found in sec- 
tions 2.2 and 2.3 can be carried on ad infinitum. It 
is of interest to show that the fuzzification of PC 
leads to a known MVL but one that has an implication 
function that is inappropriate to the required seman- 
tics of vague inference. However, the lines of argu- 
ment and discussion are reminiscent of studies some 40 
to 50 years ago4, 41 when similar discussion of impli- 
cation in MVLs took place42. Has there been a change 
or are we just seeing a revival of technical interest 
in some aspects of infinitely valued logics? 

What Zadeh has provided is fresh semantics for 
MVLs in terms of the "degree of membership" to a fuzzy 
set, and what the many application studies of fuzzy 
reasoning2,3 are providing is detailed structure to 
those semantics, an extensive definition of what they 
need to be. Salomaa 43 in his survey of MVL nearly 
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20 years ago remarks on the difficulty of providing 
interpretations of MVLs with many truth values, Indeed, 
apart from the many studies in philosophical logic of 
3 and 4-valued systems one would be fair in assuming 
that most other studies of MVLs have been more to pro- 
vide exemplary matrices for such purposes as demon- 
strating independence of axioms in various logical 
systems than for. their own interest. 

Thus the new direction, strength, motivation,etc. 
is in the application to reasoning with uncertain data, 
and fresh progress must surely come by stress upon the 
semantics of uncertainty rather thsn upon technical 
considerations. However, here one comes up against 
another anomaly in the fuzzy reasoning literature. For 
the systems scientist, probably for most of us, the 
natural tool to use in reasoning under conditions of 
uncertainty has always been probability theory. Indeed 
the literature of inference and decision-making under 
uncertainty is both contained in, and the prime moti- 
vation behind, that of probability theory. The non- 
probabilistic studies of uncertainty are minute in 
comparison and, morever, do not conflict with prob- 
ability theory31-32,44. In recent years there have 
been major developments in probability theory45 such 
as those stemming from Carnap's study of "logical 
probability", 46-47, the more recent advanhes by Savag~ 8 
and de Finnetti 49 in laying rigor6us foundations for 
"subjective probability", and the studies by many 
workers 50-53 of new, operational foundations for 
probability in work on "computational complexity",and 
its close relationship to "subjective probability'64-55 

Yet there has been a definite and intentional 
rejection in the fuzzy logic literature of any links 
between it_and probability ~heory. Bellman and Zadeh 
55, Goguen ±s, and Lee 19, for example, all place great 
emphasis on fuzziness not being probabilistie in 
nature and "degree of membership" not being a prob- 
ability. Much of this emphasis can be attributed to 
tutorial exaggeration - it was necessary in early 
papers to make it clear that a man 5 feet tall might 
be said to have a degree of membership of .2 to the 
fuzzy set of "tall men" without there being any imp- 
iteration that he was a samp]e drawn from a population 
with probability .2, or when you measured the height 
of a "tall" man there was .2 probability that it would 
be under 5 foot, etc. Probabilistic noise on a sig- 
nal makes it "fuzzy" in some sense, but it had to be 
emphasized that such is not the nature of all 
"fuzziness". 

However, the authors go beyond mere emphasis in 
important respects: 

(a) "furthermore the correspondents of a+b and ab, 
... are the simpler operations Max(a,b) and Min 
(a,b)" (Ref 50 p.142) - it is implicitly assumed 
that events are mutually exclusive (for conjunction) 
OF statistically independent (for disjunction) - 
these are the natural assumption of the applied 
mathematician or engineer - probability logic is not 
truth-functional and such assumptions are necessary 
to make it so - however they are not the only assum- 
ptions and I have shown21, 57, and will further 
develop in the following sections, that alternative 
assumptions make probability logic truth-functional 
as a fuzzy logic in terms of definition (c) of 
section 2.1; 

(b) "the allowable operations on distributions do not 
include minimum" (ref. 18 p.340) - again this is a 
common ingression for the discontinuous min/max 
operation of fuzzy logic seem strikingly different 
from our normal manipulation of probabilities - 

however, as noted above, this is not so; 

(c) "it would be nice to combine probability theory 
with symbolic logic. But we do not seem to know 
how to do this". (ref. 19 p.lOg) - this, when there 
are the studies of Gaifmann58, Scott and Kraus 5~, 
AdamsTO, Fenstad 61, and Rescher 82, together with 

• 53 the, perhaps less well-known, studies of Danlelsson 
and Miura65 on probabilistic models of modal logics 
or that of Lukasiewicz on the logical foundations 
of probability theory, first published in 1913, but 
only recently available in English 65. 

However, there is a strong element of truth in 
Lee's statement (c) because, despite these resul~s, 
logicians in general do seem to have neglected prob- 
ability logic to the same extent that they have given 
"vagueness the go-by ''66. In his analysis of the emer- 
gence of the concept of probability Hacking 8? identi- 
fies it with the emergence of modern science when 
"theological views of divine foreknowledge were being 
reinforced by the amazing success of mechanistic models 
.... the specific mode of determinism is essential to 
the formation of concepts of change and probability". 
Yet in this peculiar symbiosis between determinism and 
chance it is clearly determinism that has the upper 
band in the philosophy of science and its logic (ref. 
68 pp.316), so much so that Suppes 69 has felt 5t 
necessary to attack what he calls the "new theology of 
science" that holds such tenets as "knowledge must be 
grounded in certainty". 

Even in c!assical multivalued logic studies the 
rejection of probabilistie interpretations has been 
definite and intentional. Salomaa (Per.43 p.120) des- 
cribes attempts to identify the truth-value of a pro- 
position with ~ probability as "futile" quoting Maz- 
urkiewicz as quoted by Zawirski (ref.69 p.516) on the 
~ounds that probability logics are non-truth-functional. 
He concludes "th~z~e is no use in combining these two 
things" (multivalued and probability logics). This 
anti-probability ethos is so strong that it allows 
Sanford (ref.12 p.32) to reject probability logics as 
models for vagueness by "~isprovlng" what is a tauto- 
logy of probability logic by an error in arithmetic. 

The critical comments of this section have not 
been made for their own sake but rather to identify a 
set of assumptions which are so prevalent in the liter- 
ature as to command unquestioning acceptance, yet which 
are not valid• There is a common foundation to probab- 
ility logic and the many "fuzzy logics" in sense (c) of 
section 2.2. The strength of this foundation is the 
very non-truth-functionality of probability logic that 
has been quoted as a disadvantage. Many properties may 
he proved of a general "probability logic" that continue 
to hold when it is made truth-functional in a variety 
of ways, one of which, for example gives Lukasiewicz L I 
All the important properties of the implication func- 
tion, for example, may be derived in the basic non-truth- 
functional logic and the same valuation of implication 
holds in Rescher's probability logic and Lukasiewicz L I. 
There are also alternative implication functions, all 
with the basic required semantics discussed in section 
2.3 corresponding for example to conditional probabi- 
lity, that in their turn lead to alternative MVLs. 

That is the technical background - an integrated 
mathematical structure for the logics of uncertainty. 
There is also a common semantic interpretation that 
links fuzzy logic with logics of subjective48,49,71and 
qualitative probability72, 73 and belief systems 74, a 
not unreasonable linkage if fuzzy logic is itself to be a 
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foundation for models of human verbal reasoning and 
hence also of communication amongst people. 

3.1 Connectives for a Basic MVL 

In considering non-truth-functional logics it is 
necessary to make a clear distinction between the 
(algebraic) structure of the propositional calculus 
for conjunctively and disjunctively combining proposi- 
tion and the truth values ascribed to the propositions 
themselves. There are many possible starting points 
but, for the purposes of this outline, it is conven- 
ient to assume a lattice of propositions, L(X, F, T, 
v, ^ ), generated by a set of elements, X, under two 
(idempotent, commutative) monoid operations, v (disj- 
unction), ^ (conjunction), with maximum element, T, and 
minimum element, F, i.e. L satisfies: 

x e L, x v x = x ^ x = x (i) 

V x, yeL, x v y = y v x, x ~ y = y ^ x (2) 

x, y, z e L, x V(y v z) = (x y) (3) 
x^(y ^ z) : (x ^ y) ~ z 

x, y ~ L, x^ (x v y) : x, xv(x ^ y) =x(4) 

x e L, xvF = x, x~F = F, xvT = T, 
x^T = X (5) 

the idempotent, commutative, associative, and adsorp- 
tion postulates, together with a definition of the 
minimal and maximal elements (ref.75 p.18). The usual 
order relation is also defined: 

x, y e L, x ~ y <=>~ z ~ L : y : x^ z (6) 

It is possible to make a case for weaker structures 
(e.g. dropping idempotency75)but, for present purposes, 
this will be taken as an unreasonably wide generaliza- 
tion of our concepts of conjunction and disjunction. 
Now suppose that every element of L is assigned a 
"truth-value" (for different applications different 
terminologies might be more appropriate, "probability", 
"degree of knowledge", "level of belief", etc.) in the 
closed interval, [o,i] by a continuous, order-preserv- 
ing function p: L ÷ [O,i ], with the constraints: 

p(F) = O, p(T) = 1 (7) 

the equivalence relation on L, ~, defined by: 

x ~ y <=> p(x v y) = p(x ^ y) (8) 

is a congruence on L. Both these constraints ensure 
compatibility between the lattice and the truth valu- 
ation upon it. Note that by the order preservation 
we already have: 

p(x ~ y) ~ Min(p(x), p(y)) ~Max(p(x), p(y)) 
p(x v y) (9) 

To complete the definition of an MVL one needs 
values for equivalence, ~, implication,D, and negation 
" , of propositions. I shall leave open for the moment 
the question of whether these concepts are represented 
not only metalinguistically but also by lattice elem- 
ents, and regard p(x ~ y), p(x m y) and p(~ x) as being 
a notational convenience. The value of equivalence 
must obviously satisfy the constraint: 

x, y E L, x --- y <=> p(x =- y) = i (iO) 

Implication may be defined in terms of equivalence 
by noting that (corresponding to the requirements of 
section 2.3) we require: 

x, y e L, x ~ y <=> p(xmy) = 1 (ii) 

but that for x, y satisfying this we have: x vy = y, 
x ~ y = x. Thus it is natural to dsfine implication as 

the degree to which these equivalences hold: 

ImpA p(x~ y) = p((xvy) ~ y) (12) 

or 
ImPB p(xmy) = p((x ^ y) :E x) 

both of which satisfy (ii). 

(13) 

Negation may then be defined in terms of implica- 
tion in the normal manner (ref.77 p.50) as: 

p(~x) = p(x-=F) = p(xmF) (14) 

We have immediately: 

p(x) = 0 <=> p(~x) = i (15) 

I shall call an MVL with connectives satisfying 
the constraints so far a basic MVL. It is a weak, non- 
truth-functional structure of high generality. However, 
it is worth noting that if truth values are constrained 
to a binary set (0 and 1 by (7)) the basic MVL reduces 
to PC. This is a counter example to Lee's 19 remark that, 
"by rejecting the evaluation procedure of fuzzy logic, 
one would simultaneously reject that of two-valued logic" 
- long before the logic has been specialized to a par- 
ticular set of truth-functional connectives it reduces 

to PC in the binary case. 

3.2 Metrics and a Basic Probability Logic 

Equn. (i0) is only a constraint on the value of 
equivalence not a complete definition. There are two 
very natural definitions arising from (8), (9) and (i0): 

Equiv I p(x ~ y) : i - p(x v y) + p(x ^ y) (16) 

Equiv 2 p(x ~ y) : p(x~y)/p(xwy) (17) 

(with the convention that O/O = i). Note that in 

both cases: 

p(F 5T) = O (18) 

If these two definitions a~e coupled with the two 
alternatives for implication (16 and 17), we obtain: 

ImPA 1 p(xmy) = 1 - p(xvy) + p(y) (19) 

ImpB 1 p(xmy) = 1 - p(x) + p(x~y) (20) 

ImpA 2 p(xmy) = p(y)/p(xvy) (21) 

ImpB2 p(x~y) = p(x^y)/p(x) (22) 

Negation has two forms: 

Neg I p(~x) = p(x ~ F) = 1 - p(x) (23) 

O, p(x) ~ 0 (24) 
Neg 2 p(~x) = p(x ~ F) = l,p(x) = 0 

Two definitions that are already reminiscent of two 
families of MVLs 26. 

There is a further important constraint that may 
be placed upon p. It can be obtained by requiring ImPA 1 

and ImPA 2 to be identical, so that: 

p(x vy) + p(x~y) = p(x) + p(y) (25) 

i.e. p is a valuation on L (ref.75 p.74). This is the 
usual requirement upon a probability over a language 
and I shall call a basic MVL satisfying it a basic prob- 
ability logic (BPL). Most classical MVLs, such as 
Lukasiewicz Li, are also BPLs. Birkoff75 proves many 
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properties of an order-preserving valuation: notably 
that the congruence requirement (8) is automatically 
satisfied, L must be modular, and 

d(x,y) = p(xvy) - p(x^y) ( 2 6 )  

is a metric on L. 

It may be shown that i - p(x ~ y) is a metric on 
L for both our definitions Equiv I and Equiv2, and 
indeed many properties of a basic MVL may be derived 
by commencing with a postulated metric on L rather 
than our function p. The function p may then be 
defined through: 

p(x ~ y) = I - d(x,y) (27) 

p(x) = p(x E T) = i - d(x, T) (28) 

Implication may be defined in such a metric logic by 
noting that x _ y only when the triangle inequality: 

d(x,y) + d(y, T) Zd(x, T) (29) 

becomes an equality. 

Commencing with a metric on an arbitrary space, 
designating a point as T and deriving a basic MVL from 
the metric properties of the space is an alternative 
approach to that taken here. It is a particularly 
attractive approach for applications to pattern clus- 
tering 78,79 and taxonomy 8D where the metric has a 
natural meaning and the designation of T corresponds 
to the centr@ of a cluster or taxon. 

3 . 3  Truth-Functionality in MVLs 

The constraints upon the function p and its exten- 
sion to other connectives in a basic MVL are not suffi- 
cient to make the logic truth-functional, (TF), i.e. 
p(x v y), p(x^y), p(x~y), etc., cannot be defined in 
terms of p(x) and p(y). However, there are constraints 
upon the truth values of these connectives - no logic 
is completely non-truth-functional. Also various other 
constraints such as (12) or (13), (14), (16), or (17), 
and (25), give inter-definability of some connectives. 
This makes it convenient to define a weak form of 
truth-functionality: 

DefA: A basic MVL is weakly truth-functional to extent 
n if at least n of the 5 basic connectives are not 
definable in terms of the remainder. Thus a basic 
MVL is weakly TF to extent 3 (values of conjunction, 
disjunction and equivalence undefined). A basic 
probability logic is weaki¥ TF to extent 2 since (2~ 
gives interdefinabi!ity of the values of conjunction 
and disjunction. In both cases we normally reduce 
the extent by 1 by using either (16) or (17) to 
define equivalence in terms of conjunction and dis- 
junction. 

A stronger form of truth-functionality is: 

DefB: A basic MVL is truth-functional if the values 
of all binary connectives involving expressions s 
and t are equationally defined in terms of p(s) and 
p(t) where s and t are expressions having no gener- 
ating element in common. 

The lattice definitions enable one to decompose an 
arbitrary expression into components that have no 
elements in common so that the equational definitions 
may be used to compute truth values for arbitrary 
expressions. However, the equations themselves may 
not carry over to connectives between expressions with 
elements in common (e.g. the probabilistic "indepen- 

dence" assumption, p(x ~ y) = p(x)p(y) does not carry 
oyer to pLx .~ x)), 

This leads to a stronger definition: 

Deft: A basic MVL is strongly truth-functional if 
arbitrary binary connectives involving expressions s 
and t are equationally defined in terms of p(s) and 
p(t). 

We can now give some interesting results: 

(i) Strong TF and Min/Max Connectives A basic MVL is 
strongly TF~=-~the outer inequalities of equn.(9) 
are equalities, i.e.: 

p(x^y) : Min(p(x),p(y)) ( 3 0 )  

p(xvy) = Max(p(x),p(y)) ( 3 1 )  

This is essentially the result of ref.15 but is is seen 
in a new light when it is realized that "fuzzy logic" 
(in sense (c) of section 2.3) is the only MVL satisfying 
a strong truth-functionality requirement. Essentially 
it means that~ for a compound proposition, we do not 
have to remember its structure but only its truth-value. 
This seems an unrealistically strong requirement but it 
does uniquely distinguish "fuzzy logic" with its Max/Min 
connectives. It also shows why an emphasis on truth- 
functionality 43 leads to the universality of these con- 
nectives in classical MVLs 26. 

(it) Strong TF and Necgssary Mutual Implication 
strongly TF MVL has the theorem: 

V x,y, p((x > y) v (y:,x)) : i (32) 

This follows from the unit value necessarily ascribed 
to one of the two implications in a logic with Max/Min 
connectives and the constraints on equivalence and 
implication of (ii) and (12) or (13). Equn. (32) is 
effectivelv the axiom which it is necessary to add to 
those of IPC to get G6defs infinitely-valued logic 26 
Any MVL with Min/Max connectives and a "reasonable" 
definition of implication will have (32) as a thesis 
and hence cannot be characteristic for IPC. 

The following results apply to basic probability 
logics: 

(iii) LEM and Probability Logic A basic probability 
logic with Equiv and the law of the excluded middle 
(LEM) is Rescher's probability logic26. 

The LEM gives us 

p(~ x v x) = 1 ( 33 )  

and this together with (25) implies the law of con- 
tradiction: 

p(~x^ x) = 0 (34) 

The LEM together with Equiv I and (25) give: 

p(x~y) = p(~x) + p(x.~y) = p(~x~y) ( 3 5 )  

i.e. the standard implication of both PC and PL. The 
other connectives also correspond. 

(iv) Strong TF in Probability Logic and L l A strongly 
truth-functional basic probability logic with Equivl is 
precisely Lukasiewicz's infinitely-valued logic, L I. 

Equiv I gives us: 
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p(xmy) : 1 - p(x) + p(x^y) 

= 1 - p(x) + Min(p(x), p(y)) 

= Min (i, i - p(x) + p(y)) (36) 

i.e. the implication of L 1 - the other connectives 
also follow. 

The close relationship of PL and L 1 has been noted 
prevlously21,~7, 76 and results (iii) and (iv) made it 
very clear - the equivalence, implication and negation 
are identical, and PL is derived by adding LEM whereas 
L 1 is derived by assuming strong truth-functionality 
o__rMin/Max connectives o_rnecessary mutual implication 
as in equn.(32). L I may he seen to arise when a basic 
probability logic is made strongly truth-functional. 
Note that it is not possible to make Rescher's probab- 
ility logic strongly TF. The following results are 
concerned with the various logics that arise when a 
BPL is made TF as in Def B rather than strongly TF. 

(v) Statistical Independence The assumption that: 

p(x~y) = p(x)p(y) (37) 

for propositions with no common element in a BPL, 
together with Equiv I and LEM, gives a probability 
logic of assumed statistical independence between the 
generating propositions, e.g. such as arises in the 
next state calculation for probabilistic automata. 

(vi) Mutual Exclusion The assumption that: 

p(x & y) = 0 (38) 

for propositions with no common element in a BPL, 
together with Equiv I and LEM, gives a probability logic 
of assumed mutual exclusion between the generating pro- 
positions, e.g. such as arises when states are grouped 
together in a probabilistic automaton. 

(vii) A Fuzzy Logic with LEM The assumption that: 

p(xvy) = Max (p(x), p(y)) (39) 

for propositions with no common element in a BPL, 
together with Equiv I and LEM, gives a fuzzy logic of 
assumed necessary implication between the generating 
propositions, i.e. a logic based on a generating set 
forming a chain. Such a logic with Max/Min connec- 
tives but LEM also has been proposed by Sanfordl2 in 
his studies of "borderline" logics and is that ob- 
tained when one makes Rescher's PL truth-functional 
with Max/Min connectives 21. 

The alternative forms of implication, ImpA 2 and 
ImpB2, are of interest in the context of results (iii) 
through (vi). ImPB 2 is related to conditional prob- 
ability: 

p(x~y) : p(x~y)/p(x) : p(ylx) (4o) 

and gives a logic of conditional probability. Making 
logics with either of these implications strongly 
truth-functional gives a logic whose connectives are 
those of GSdel's logic except for implication which 
has Goguen's 18 ~alue: 

p(xmy) = Min(l, p(y)/p(x)) (41) 

rather than Godel's p(y) if p(x) > p(y). It is not 
clear currently how the axiomatic forms of these 
logics differ. 
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3.4 Quantification and Modalities in MVLs 

The treatment of quantification within the basic 
MVL framework developed so far is straightforward, 
and as usual, offers far richer possibilities as sug- 
gested by Mostowski 81 and developed by Rescher82, 26. 
Quantiflers are essentially arithmetic predicates 
applied globally over L to the truth-values of elements 
satisfying specified constraints - they depend on a 
specific function, p over L. 

Modalities have a similar global nature but are 
introduced as predicates over a family of admissible 
p's related by a binary relation of reachablllty", 
i.e. a "possible worlds" semantics83, 84. Again the 
availability of arithmetic predicates allows a richer 
set of modal connectives to be defined. The conven- 
tional alethic modalities have natural extended defin- 
itions - in a "world" p over L the value of ~3 x and 
Ox is: 

D x = Inf p'(x) , p' reachable from p (42) 

x = Sup D'(X) , p' reachable from p (43) 

In logics where Neg I of equn. (23) holds these are 
interdefinable in the usual way. 

In a BPL with LEM and 1 designated it may be 
shown that "reachability" being an equivalence leads 
to a logic characteristic of $562. In the study of 
stochastic automata "teachability" in the sense of a 
'possible future state distribution" is transitive but 
not necessarily reflexive unless a stationary cycle 
is reached. Since the designation of 1 in a BPL with 
LEM gives a logic characteristic of PC these consider- 
ations reduce to those analysed by Prior85 in his 
studies of temporal logic. Similar considerations 
apply to the BPLs without LEM which, with 1 designated 
are closely related to IPC and hence to $4 under various 
"translations"86. 

Clearly this whole area of infinitely-valued MVLs 
with quantifiers and modalities in relation to axiomatic 
studies of standard and non-standard logics is worth 
detailed examination, if only because of its computatio- 
nal implications. By manipulating the valuation rather 
than the axioms we reduce symbolic algebra to arith- 
metic, making computation easier. This is already done 
for $5 where engineers typically use a probability logic 
to represent non-deterministic behaviour even though the 
exact values of the "probabilities" have no significance 
other than being non-zero, non-unity87, 88 

Also of interest are the non-linear arithmetic 
functions that may be used in defining modal operators. 
A "borderline logic ''12 may be developed using power 
functions such as: 

D N x = p(x) N (44) 

where D N is a "determinacy" operator expressing the 
extent ~o which p(x) is near unity. A "borderline" 
ease is one that is neither near unity nor near zero 
so that the degree to which x is borderline in a given 
world is: 

B N X = (~D x)^ ( ~D ~x) (45) 

Thus the truth value of x being necessarily borderline 
in p is: 

B N x : Inf (~D x)~(~D~x) (46) 
p' reachable 

The relationship of D 2 to Zadeh's 24 definition of 



"very" is interesting and again would repay further 
exploration. 

It is important to emphasize that many of the 
results of this section may be treated as properties 
of the underlying lattice structure and developed 
algebraically rather than numerically. This shows up 
particularly clearly in the elegant studies of subres- 
idua~d lattices reported recently by Epstein and 
Horn . Particularly in the area of quantification 
and modalities it seems worthwhile to fully develop 
relationships between fuzzy logics, probability logics 
and classical infinitely-valued MVL's so as to fully 
exploit the wide range of concepts, techniques and 
results available in the literature. 90 

4 Semantics, Summary and Conclusions 

In this paper I have been concerned to draw toge- 
ther all the logics of uncertainty. Doing so is not 
only of technical interest but also opens up the rich 
range of semantics that have been associated with 
classical modal logics, standard and non-standard 
propositional and predicate calculi, multi-valued and 
probability logics, together with the semantics of 
system theory and vague reasoning introduced by Zadeh. 

There is one particular semantics that I have found 
very useful in illuminating the differences between PL 
and L 1 as noted in results (iii) and (iv). Consider a 
population each member of which can respond to certain 
questions with a binary, yea or no, reply. The forms 
of question will involve evaluating a statement about 
a proposition that belongs to the generating set, X, 
of a lattice, L, as defined in section 3.1. For exam- 
ple "is this proposition, x, true or false, reasonable 
or unreasonable, believed or not believed,"etc. The 
value of p(x) is defined to be the proportion of the 
population replying "yes" to the question. A compound 
proposition in L is given a valuation in terms of the 
proportion of the population who say "yes" to both x 
and y for propositions of the form x^ y, and so on for 
other cases. 

One may now return to the initial discussion of 
section 3 and note that a degree of membership of .2 
to the fuzzy sat of "tall men" now means that 20% of 
a certain population would accept the membership. If 
the "population" is one of measurements of height of 
a person then this is a physical "noise" model of 
probability. If the "population" is one of people 
then this is a social acceptance model of linguistic 
usage, a reasonable model of Zadeh's "fuzzy reasoning" 
based on human linguistic behaviour. If the "popul- 
lation" is one of "neurons" then this is a model of 
individual decision-making. If we allow metalinguis- 
tic statements about the value of p(x) to be made by 
members of the population then this us a model of 
"subjective probability" or "belief", and ~ so on. 

Consider now the additionalconstraints that must 
be placed upon the behaviour of the population to 
correspond to results (iii) and (iv). Rescher's 
probability logic is obtained if someone who says 
"yes" to x must say "no" to ~x. Lukasiewicz's L 1 is 
obtained if members of the population each evaluated 
the evidence for x in the same way but applied dif- 
fering thresholds of acceptance. The member with the 
lowest threshold would then always respond with "yes" 
when any other member did, and so on up the scale of 
thresholds, thus giving the required relation of 
implication between propositions of equn.(32). This 
model, although unusual, has its intuitive attractions, 
e.g. Reason 91 has shown that the threshold applied by 
human beings in coming to a binary decision on an 
essentially analog variable seems to be associated 
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with personality factors and a trait of the indivi- 
dual. If so, human populations would tend to show 
more a fuzzy, than a stochastic, logic in their 
decision making. 

Similarly populations showing the "statistical 
independence" of (v) or the "mutual exclusion" of 
(vi) may be defined. However, rather than argue the 
case for one type of population or another, one can now 
envisage that logics based on a real population will be 
of mixed type and hence it is more interesting to 
insert the concepts and talk in terms of a "fuzzy", 
"probabilistic", "independence", "exclusion", etc. 
relationship between propositions. Such relationships 
are mainly of interest to the extent that they are 
necessary, and thus fit natlmally into the framework 
of arithmetic modal predicates discussed in section 3.4. 
For example, if the degree of fuzziness of x relative 
to y in p is defined by: 

F(x,y) : 1 - p(x v y) + Max(p(x), p(y)) (46) 

then F(×,y) expresses the extent to which there is 
a necessary fuzzy connection between the two proposi- 
tions. 

In conclusion, there is no one logical system that 
stands out clearly as the logic of uncertainty. Many 
applied studies have commenced with a specific logic 
and found it necessary to modify it to match the 
required semantics. There is technical scope for an 
explosive proliferation of MVLs, particularly with 
respect to modal operators. This proliferation is to 
be welcomed rather than contained - the real-world, 
particularly that involving human agents, sustains a 
far greater diversity of patterns of reasoning than 
allowed for in classical logic. However, to utilise 
and make sense of these diverse application studies 
the common foundations of the many logics of uncer- 
tainty need to be firmly established. This paper has 
ranged far and wide and certainly does not yet present 
a totally coherent and complete view of the logics of 
uncertainty. If it at least clarifies some aspects of 
the literature of these logics, demonstrates the close 
relationships between them, and indicates the wealth 
of both technical and semantic interchang e possible 
when the.loglcs are viewed as a whole, then it will 
have served its purpose. 
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