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Probability theory and fuzzy logic have been presented as quite distinct 
theoretical foundations for reasoning and decision making in situations of 
uncertainty. This paper establishes a common basis for both forms of logic of 
uncertainty in which a basic uncertainty logic is defined in terms of a valuation 
on a lattice of propositions. The (non-truth-functional) connectives for conjunc- 
tion, disjunction, equivalence, implication, and negation are defined in terms 
which closely resemble those of probability theory. Addition of the axiom of the 
excluded middle tO the basic logic gives a standard probability logic. Alterna- 
tively, addition of a requirement for strong truth-functionality (truth-value of 
connective determined by truth-value of constituents) gives a fuzzy logic with 
connectives, including implication, as in Lukasiewicz' infinitely valued logic. 
A common semantics for all such variants is given in terms of binary responses 
from a population. The type of population, e.g., physical events, people, or neu- 
rons, determines whether the model is of physical probability, subjective 
belief, or human decision-making. The formal theory and the semantics together 
illustrate clearly the precise similarities and differences between fuzzy and 
probability logics. 

l .  INTRODUCTION 

Multivalued logics using truth-valuations in the interval [0, 1] and min/max 
connectives for conjunction/disjunction have been presented in the literature 
in recent years as nonprobabilistic, " fuzzy" logics which are favored alternatives 
to probability theory in explicating some aspects of imprecise and uncertain 
concepts and decisions (Bellman and Zadeh, 1970, p. 141; Coguen, 1969, p. 340; 
Lee, 1972, p. 109; Sanford, 1975, p. 31). In  classical studies (Rescher, 1969) 
these multivalued logics have had such different domains of application from 
probability logic that there has been little incentive to make detailed comparisons 
between the two approaches. However, particularly in view of recent critical 
comment  about the role of fuzzy logics where probability theory might be 
applied (Arbid, 1977; Fox, 1977; Stallings, 1977) and practical comparisons 
between them (Gaines, 1975; Baas and Kwakernaak, 1977) it now seems essential 
to establish the exact relationships, similarities and differences, between 
probability and fuzzy logics. 

154 
0019-9958[78/0382-0154502.00/0 
Copyright ~ 1978 by A c a d e m i c  Press, I n c .  

All rights of reproduction in any form reserved. 



FUZZY AND PROBABILITY UNCERTAINTY LOGICS 155 

This paper develops a basic uncertainty logic in terms of a valuation on a 
lattice of propositions that is a common foundation to both fuzzy and probability 
logics. Two additional, and incompatible, axioms are then proposed, one of which 
leads to Lukasiewicz' infinitely valued "fuzzy" logic, while the other leads to 
classical probability logic. A semantic model is also given of the basic uncertainty 
logic which can be interpreted in a variety of ways to illustrate the similarities and 
differences between fuzzy and probability logics. 

Two specific points are worth emphasizing before the technical presentation. 
First, that this paper is not reductionist--there are significant differences between 
fuzzy logics and probability logics, in their motivations, applications, and 
axioms. However, there are also close relationships between the two forms of 
logic which are themselves significant. Second, the term fuzzy  logic has been 
used variously in the literature to denote: 

(a) A basis for reasoning with vague statements. The term "fuzzy" had a 
colloquial meaning before Zadeh gave it a technical definition and there are 
(Gaines and Kohout, 1977) independent uses of the term; deliberately variant fuzzy 
logics; and unwitting variations (Arbib, 1977); 

(b) A basis for linguistic reasoning with vague statements using fuzzy  set 
theory for the fuzzification of logical structures. This more restricted definition 
corresponds to Zadeh's own papers where the emphasis is on linguistic truth 
values (Bellman and Zadeh, 1977); 

(c) A multivalued logic in which truth values are in the interval [0, 1], the 
valuation of a disjunction is the maximum of the disjuncts, and that of a conjunction 
is the minimum of the conjuncts. This is a "population stereotype" for fuzzy 
logics. It may be specialized to the form of implication being that of Lukasiewicz, 
infinitely valued logic (Giles, 1975), or generalized to truth-values in a lattice 
(Goguen, 1969; Brown, 1971). All variants of this definition have in common an 
ordered set of truth-values and define the logical connectives in terms of this 
ordering. 

There is ample scope for confusion since, for example, Zadeh (1975) fuzzifies 
in terms of (b) logics that are already fuzzy in the sense of (c). In this paper 
I am concerned primarily with definition (c), bearing in mind however that the 
key requirement is the use of fuzzy logics as a basis for linguistic reasoning as 
in (b). 

2. MIN/MAX CONNECTIVES IN PROBABILITY LOGICS 

This section shows that the min/max connectives that are often supposed to 
characterize fuzzy logics also arise in probability logic. It is intended to give an 
intuitive feeling for the relationship between the logics in preparation for the 
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more detailed analysis of Section 3. For the moment a fuzzy logic is taken to 
have operations of conjunction, disjunction, and negation as defined by Lee 
(1972) and the valuation of implication is not considered. In these terms fuzzy 
logic may be thought of as a multivalued extension of Boolean logic based on 
Zadeh's (1965) fuzzy set theory in which truth-values are extended from the 
end points of the interval, [0, 1], to range through the entire interval. The 
normal logical operations are defined in terms of arithmetic operations on these 
values regarded as "degrees of membership" to truth. That  is (taking a lowercase 
letter as a logic variable, and the corresponding capital letter as its degree of 
membership): 

z ---- x AND y =~ Z = rain(X, Y), (1) 

z = x O R y  = ~ Z = m a x ( X , Y ) ,  (2) 

z = N O T  y =~ Z =  1 - -  Y. (3) 

These definitions coincide with the normal logic functions for the two extreme 
values (TRUE = 1, FALSE = 0). 

Using the same notation as above but regarding, for example, X as being not 
only a degree of membership but also the actual probability of occurrence of 
event x, one may derive the probabilistie equivalents of Eqs. (1) through (3). 
It is assumed that the events themselves are binary in nature and either occur 
or do not occur. Equation (3) still applies (as usual, X means the nonoccurrence 
of x). 

For 

z-----NOTy, Z = p ( z )  = p ( y )  = l - - p ( y )  ~- 1 - -  Y. (4) 

Consider now the expressions for X and Y in terms of the joint probabilities 
of events x and y: 

X = p(x) = p(x  A y)  + p(x  A ~), 

Y = p (y )  = p(x  ^ y)  + p ( x  ^ y). 

(5) 

(6) 

From these two equations, given that probabilities lie in the interval [0, I], 
we may derive the inequalities 

0 <~ p(x A y) <~ min(X, Y), 

0 ~ X Y  ~ rain(X, Y), 

max(X, Y) <~ p(x v y) ~ 1, 

m a x ( X , Y ) ~ X +  Y - -  X Y  ~ I. 

(7) 

(8) 
(9) 

(10) 
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Consider now the significance of each of the three values in these inequalities 
being attained: 

For z = x A N D  y, Z = p(x A y), the conditions are: 

(i) Z = 0 <:> p(x A y) = 0 ~=> X D ~f A N D  y D ~, i.e., x and y are 
mutually exclusive. 

(ii) Z = X Y  ~>p(x A y ) = p ( X ) p ( y ) ,  i.e., x and y are statistically 
independent. 

(iii) Z = rain(X, Y) ~-p(x A ~9) ~- 0 0 R p ( 2  A y) = 0 ~ X---*y O R y  --~ x, 
i.e., one of x and y strictly implies the other. 

For z = x OR y, Z = p(x v y)  ----- 1 - -  p(~ A 2V), the conditions are: 

(i') Z = 1 ~:>p(xA 29 ) = 0 ~*~2Dy A N D  y D 2 ,  i.e., one of x and y 
lllust occur. 

(ii') Z = X -{- Y -- X Y  <*- p(x A y) = p(x) p(y) ,  i.e., x and y are statis- 
tically independent. 

(iii') Z = m a x ( X , Y ) ~ p ( x A S )  = 0  OR p( •Ay)  = 0 ~ x - + y  OR 
y -+  x; i.e., one of x or y strictly implies the other. Note the emphasis on strict, 
rather than material, implication: x -+  y is equivalent to necessarily x D y. The 
weaker result, p((x D y) v ( y  D x)) = 1, is always true. 

I t  can be seen that conditions (i) and (i') are independent, and together imply 
that x = y. Conditions (ii) and (ii') are equivalent and together lead to a proba- 
bility logic in which atomic propositions are assumed statistically independent, 
giving multiplication and addition as connectives. Conditions (iii) and (iii') are 
equivalent and together lead to a probability logic with the max/min connectives 
of a "fuzzy" logic between atomic propositions which are assumed to form a 
single chain of implication. Thus, informally, the assumptions leading to these 
very different forms of logical connective are seen to be of opposite nature 
(independence versus implication), but  both multiplication/addition, and 
max/min, connectives may be seen to arise from constraints on an underlying 
probability logic. 

3. A FORMAL BASIS FOR THE COMPARISON OF 
VARIOUS LOGICS OF UNCERTAINTY 

The main function of the comparison derived in Section 2 was to demonstrate 
that (as noted by Gaines, 1975; Gaines and Kohout  ,1975; Watanabe, 1975) 
the use of min and max operations in fuzzy logic is not sufficient to discriminate 
the logic from that of probability theory- -both  these operations arise naturally 
in the calculation of the conjunction and disjunction of probabilistic events. Our 
association of addition and multiplication as natural operations upon probabilities 
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comes from our frequent interest in statistically independent events, not from the 
logic of probability itself. However, the derivation so far has some anomalies 
which make it necessary to probe rather deeper to discover the exact nature of the 
relationship between fuzzy and probability logics. In particular, Eq. (5) enables 
one to derive (by substituting x for y) the result that p(x ^ ~) = 0, the law of 
contradiction, a thesis which is not one of fuzzy logic as normally defined. The 
difficulty arises because in terms of the lattice of statements about events, 
negation in probability logic is a true complement, whereas in fuzzy logic 
it is not even a pseudocomplement (Birkhoff 1948, p. 147). 

In this section the analysis of Section 2 will be repeated more formally, and 
a logic will be developed based on a valuation over a lattice that closely resembles 
probability logic (I shall call it an uncertainty logic (UL)), but in which neither 
the law of the excluded middle (LE1V[) nor that of contradiction are tautologies. 
This logic will be shown to default to the standard propositional calculus (PC) 
when truth-values are restricted to be 0 or 1, and hence to be true extension of 
PC. A definition of logical equivalence in terms of a metric on the lattice will be 
used to define implication and negation. Given this logic, it will be shown that 
the addition of either one or the other of what, in Heyting's intuitionistic 
propositional calculus (IPC) terms are "paradoxes" of PC, (Rescher, 1968, 
Chap. 2) leads to either a probability or a fuzzy logic. The assumption of 
p(x v ~ ) =  1 gives precisely Rescher's (1968, Chap. 11) probability logic, 
while the assumption that either p(x D y) = 1 or p ( y  D x) = 1 gives a fuzzy 
logic which is precisely Lukasiewicz Lg. (Rescher 1968, Chap. 6). 

Let L(X, F, T, v, A) be the free lattice generated by a set of elements, X, 
under two (idempotent, commutative) semigroup operations, v, ^, with 
maximal element T and minimal element F, i.e., L satisfies 

(P1) VxEL, x v x ~ x ^ x ~ x ,  

(P2) Vx, y~L,  x v y = y v x ,  x A y = y A x ,  

(P3) Vx, y, zcL ,  x v ( y v z ) = ( x v y ) v z ,  x ^ ( y ^ z ) ~ ( x ^ y ) A z ,  

(P4) Vx, y ~ L ,  X V ( x A y )  = x , x ^ ( x v y )  =X, 

(PS) VxEL, x v  T-~ T , x ^  T ~ x ,  x v F ~ x , x ^ F - ~ F ,  

the idempotent, commutative, associative, and adsorption postulates, together 
with a definition of the minimal and maximal elelfients (Birkhoff, 1948, p. 18). 
The usual order relation may also be defined: 

(P6) Vx, y~L,  x ~ y - * ~ - 3 z ~ L : y = x v z .  

It is possible to make cases for weaker structures (e.g., dropping idempotency) 
but, for present purposes, this will be taken as an unreasonably wide general- 
ization of our concepts of conjunction and disjunction. Now suppose that every 
element of L is assigned a "truth-value" (for different applications, different 
terminologies may be more appropriate, "probability", "degree of knowledge," 
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"level of belief," etc.) in the closed interval [0, 1], by a continuous, order- 
preserving function, p: L --~ [0, 1], with the constraints 

(1,7) p ( e )  = 0, p ( T )  = 1; 

(P8) Vx, y eL,  x <~ y => p(x) <~ p(y); 

(P9) Vx, y e L ,  p ( x ^ y ) + p ( x v y ) = p ( x ) + p ( y ) ,  

i.e., p is a continuous, order-preserving valuation (Birkhoff, 1948, p. 74) on L. 
Note that for p to exist the lattice must be modular, and that we have 

p(x A y) <~ min(p(x), p(y)) ~ max(p(x), p(y)) ~ p(x v y). (11) 

Now the relation defined by 

(PI0) Vx, y e L ,  x ~ y ~ p ( x ^ y ) = p ( x v y )  

is a congruence onL  (Birkhoff, 1948, p. 77), so that 

Yx, y, z e L ,  x ~ y ~ ( x A z ) = - - ( y ^ z ) A N D ( x v z ) ~ ( y v z ) , ( 1 2 )  

which in its turn implies 

Vx, y,  z E L, p(x ^ y) = p(x v y) ~ p(x A z) = p(y A z) AND 

p(x v z) = p(y v z), (13) 

i.e., x ~ y means that y may be substituted freely for x in p expressions without 
changing their value. Thus, with respect to the valuation p, the relation, = ,  is 
one of logical equivalence. 

To give the final touch to this structure as a multivalued logic we need to 
define implication and negation. It is worth pondering these because the general 
structure so far is common to virtually all the logics, for example, in Rescher 
(1969) it is largely the definitions of implication and negation that generates a 
particular multivalued logic. Note, for example, that P8 and P9 together are 
adequate to ensure that there are unambiguously defined truth tables for 
conjunction (^) and disjunction (v) in the binary case when the domain o fp  is 
restricted to the end points of the interval, and that these are identical to those 
of the normal propositional calculus. These two postulates also enable us to 
infer the inequalities of Eq. (11), an intuitively satisfying result. Clearly the 
postulate, P9, still holds when the outer inequalities become equalities--a further 
demonstration that the additivity of probability-like valuations is completely 
compatible with, and indeed closely related to, the min/max connectives of 
fuzzy logic. 
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Equivalence, Implication, and Negation in Metric Terms 

The  most elegant and intuitively satisfying route to definitions of implication 
and negation in the present context is through the definition of a metric on the 
lattice giving a measure of the "distance" apar t  of two propositions under a 
valuation. This  is naturally based on the congruence already defined since it is 
clearly desirable that congruent elements, being logically equivalent under the 
valuation, should be at zero distance from one another. Define: 

(P l l )  Vx, y e L ,  d(x ,y )  ~ - p ( x v y ) - - p ( x A y ) .  

Birkhoff (1948, p. 77) shows that d defines a quasimetric on L such that 

d(x, x) ---- 0, (14) 

0 ~ d(x ,y )  ~< 1, (15) 

d(x, y)  + d(y,  z) >I d(x, z). (16) 

Additionally, P10 ensures that d defines a t rue  metric on the quotient lattice 
under the congruence already defined so that 

d(x, y)  = 0 ~ x -~ y. (17) 

This  is not the only metric on a lattice upon which logics may  be based but it is 
the one that  generates both probabili ty and fuzzy logics so that it suffices for 
this paper. 

The  distance defined by d varies from 0 to 1 with 0 implying that two elements 
are congruent. For consistency with the interpretation of the valuation itself, 
where 1 means true, it is convenient to define a measure of  equivalence, 
p (x --~ y), between two members  of L as 1 minus the distance between them: 

(P12) Vx, y e L  p(x ~-- y)  = 1 - -  d(x, y)  

= 1 - -  p(x v y) + p(x A y). 

Thus  two congruent elements are equiyalent with a valuation of 1, while two 
maximally nonequivalent elements (congruent to T and F) are "equivalent" 
with valuation 0. This  consistency between the valuation of equivalence and 
that of lattice elements becomes important if we should wish to postulate lattice 
elements (rather than a purely metalinguistic measure) representing the 
equivalence, implication, and negation of lattice elements. 

We may now define a valuation of the extent to which x "implies y "  by noting 
that if x 3 y is true in the PC sense in L, then x A y = X and x v y ---- y. The  
degree of equivalence between x ^ y and x (or x v y and y - - t h e y  turn out to be 
the same) is a suitable measure of the strength of implication: 

(P13) gx, y e L ,  p ( x 3 y ) = p ( x ~ x A y ) = l - - d ( x ,  x A y )  

= 1 - -  p(x) + p(x A y) 

~- 1 + p ( y )  - -  p ( x  v y )  = 1 - -  d ( y ,  x v y ) .  
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We may now go on to define negation in the usual way (Prior, 1962, p. 50) in 
terms of equivalence or implication: 

(P14) Vx~L,  p(~) = p ( x  ~ F )  = p ( x D F )  = 1 --p(x).  

One may note that conversely, 

p(T  ~-- x) = p (TD x) = p(x), 

as it should. 
The form of implication defined in PI3 has the property that 

(18) 

gx, y e L ,  p(y) = p ( x  v y ) -  1 + p ( x D y )  > ~ p ( x ) -  (1 - -p (xDy) ) ,  

(19) 

which enables a lower bound to be placed on the truth value ofy given those for x 
and x D y, thus allowing a limited form of modus ponem. Thus it satisfies the 
normal requirement (Lee and Chang, 1971) that the assertion of x D y may be 
used to infer that p (y)  ~ p(x), and hence also that p (y)  ~> max(p(xi)) where y 
is constrained by "rules" of the form xi D y ("if x i then y"), a common pattern of 
inference in, for example, control applications of fuzzy reasoning (Mamdani and 
Assilian, 1975). 

These definitions again lead to the truth tables of PC in the binary case, and 
it is perhaps worth noting that they are a counterexample to Lee's (1972) 
remark that, "by rejecting the evaluation procedure of fuzzy logic, one would 
simultaneously reject that of two-valued logic"--long before the logic has been 
specialized to a particular set of truth-functional connectives it reduces to PC 
in the binary case. 

I have deliberately left open the question of whether there are elements within 
L that represent x D y and £- -much  of what one wishes to use in either proba- 
bility or fuzzy logics does not require this assumption, e.g., models of state- 
determined machines, automata, involve only the connectives for conjunction 
and disjunction, not those for implication and negation (Gaines and Kohout, 
1975). However, let us assume for the moment that there are elements in L 
representing x ~ y, x Dy,  and £. Then we have from (P10 and P13): 

so that 

p(x v (x D y)) -~ p(x ^ (x D y)) = 1 -~- p(x ^ y), 

p(x v g) + p(x ^ g) = 1. 

(20) 

(21) 

Thus the law of the excluded middle (p(x v g) = 1) and the law of contradiction 
(p(x ^ 2) = 0) are equivalent in this logic in that postulating one implies the 
other. 
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The structure developed so far is the common denominator of probabilistic 
and fuzzy logics--each will be derived from it in the following sections. In 
summary, P1 through P5 define a lattice, and P6 through P9 a positive isotone 
valuation upon it. I have previously (Gaines, 1976) called this a "basic probability 
logic" because it satisfies all the normal postulates of a probability algebra 
(Birkhoff, 1948, p. 197) except that negation and its valuation are undefined. 
However, this terminology is potentially confusing given that probability valua- 
tions are usually defined only on complemented distributive lattices, and the 
term used in this paper, a basic uncertainty logic (for a system satisfying P1 
through P l l )  seems better. The valuations of equivalence, implication, and 
negation, defined by P12 through P14, are not the only ones possible (see 
Gaines (1976) for alternatives related to conditional probability), but are very 
natural so that P1 through P14 might fairly be said to define a standard uncertainty 
logic (SUL). 

Note that a standard uncertainty logic leads to the sum of the values of an 
element and its negation being unity (P14), which is the remaining postulate for 
a probability on a language adopted, for example, by Fenstad (1967). Up to the 
point of choosing this form of negation, our basic uncertainty logic could have 
been specialized into Heyting's intuitionistic propositional calculus by postu- 
lating pseudocomplementation in L. However, for example, Eq. (21) is incon- 
sistent with IPC. Note that the only implied constraint on the lattice is that the 
quotient lattice under the congruence be modular (Birkhoff, 1948, p. 76)--it 
need not be distributive, Complemented, or pseudocomplemented. We can 
add a postulate of distributivity: 

(P15) Vx, y , z ~ L ,  x ^ ( y v z ) ~ - ( x ^ y ) v ( x ^ z )  

which implies the other forms of distributivity (Birkhoff, 1948, p. 133) and is 
needed for the two specializations of the SUL to be described in the following 
sections. 

4. DERIVATION OF RESCHER'S PROBABILITY LOGIC 

Rescher (1969, p. 185) defines a probability logic over a domain of statements 
in the propositional calculus in terms of a function, p, that assigns to a statement, 
x, a real value, p(x) satisfying the following postulates: 

(R1) 0 ~ p(x), for any statement x; 

(R2) p(x v y ) =  p ( x ) + p ( y ) ,  provided that x and y are mutually 
exclusive; 

(R3) p(x) = p(y) when x and y are logically equivalent; 

(R4) p(x v ~) = l. 
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From these one may derive the further results: 

0 ~< p(x) ~< 1, (22) 
p(F)  = o, p ( T )  = 1, (23) 

p(x ^ y) ~ min(p(x), p(y))  ~ max(p(x), p(y))  <~ p(x v y), (24) 

p(~) = 1 - -  p(x), (25) 

p(x A y) = p(x) + p(y)  - -  p(x V y), (26) 

p(x D y) = p(~ v y) 

= p(~:) + p (x  ^ y) ,  (27) 

p(x ~ y) = p((x 3 y) ^ (y  3 x)) 
= p((Y v y) ^ (.~ v x)) = 1 - -  p(x v y) @ p(x ^ y), (28) 

where T is any statement asserted and F is any statement whose negation is 
asserted. This is the same system as that taken by Fenstad (1967) to represent 
probabilities on a first order language, but he takes (R3) and Eqs. (23)-(26) as 
postulates. 

If we take the domain of statements to be defined as a lattice L(X,  T, F, v, ^)  
satisfying P1 through P4, then R1, R2, and R3 are clearly related to P6 through 
P9. R4 is shown by (21) not to be a tautology, but to be equivalent to the 
assumption of either the law of the excluded middle or that of contradiction. 
We now prove that adding either law to a distributive standard uncertainty logic 
as previously defined results in a system equivalent to Rescher's probability 
logic. 

THEOREM 1. The addition of the following postulate, P16, to those for a distri- 
butive standard uncertainty logic, P1 through P15, gives a logic identical to Rescher's 
probability logic (as defined by R1 through R4). 

(P16) Vx ~L, p(x v ~) = 1. 

Proof. First consider whether Rescher's postulates lead to P1 through P15: 
P1 through P6 and P15 follow since the language over which a probability is 
defined is PC; P7 is (23); P8 follows from (24); P9 is (26); P10 follows from (28); 
P l l  is a definition; P12 is (28); P13 is (27); P14 is (25); and P16 is R4. Con- 
versely, R1 through R4 follow from P1 through P16. 

Thus adding LEN[ to a distributive SUL gives a conventional probability 
logic. In Section 5 it is shown that an alternative addition gives a fuzzy logic. 

5. DERIVATION OF ~ 1 '  A Fuzzy LOGIC 

The multivalued logic which Zadeh (1975) takes as a basis for his model of 
linguistic reasoning with vague statements is Lukasiewicz' infinitely valued logic, 
£~1 (Rescher, 1969, Sect. 6), the connectives of which are defined entirely in 
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terms of truth rules. For any statement, x, we have a truth-value, p(x), such that 

(L1) 0~<p(x)  <~1. 

The logical connectives are then defined by 

(L2) p(2) = 1 -- p(x), 

(L3) p(x A y) = min(p(x),p(y)), 

(L4) p(x v y) = max(p(x), p(y)), 

(L5) p(x D y) = min(1, 1 - -  p(x) + p(y)), 

(L6) p(x ~ y) = min(1 - -  p(x) + p(y), 1 + p(x) ~ p(y)). 

Note that the connectives themselves are assumed to have no properties other 
than being linguistic markers. However, the quotient language under the 
equivalence of L6 is clearly a distributive lattice, but the complementation of L2 
is nonstandard in that it does not define a complement in this lattice. 

We can now prove that the standard uncertainty logic of P1 through P14 
becomes L~I with the addition of an alternative postulate to P 16, one of necessary 
implication between two propositions, P17: 

THEOREM 2. The addition of the following postulate, P17, to those for a 
distributive standard uncertainty logic, P1 through P15, gives a logic identical to 
Lukasiewicz' Lel as in L1 through L6. 

(P17) Vx, y E L ,  p ( x D y )  = 1 O R p ( y D x )  = 1. 

Proof. First if we assume L1 through L6, then P1 through P15 and P17 
follow trivially. Conversely, P17 together with P13 and P8 allow us to infer L3 
and the rest follow. 

Note again that P17 is in terms of necessary, or strict, implication. We have in 
both probability and fuzzy logics that 

p((x ~ y)  v (y  ~ x)) = 1. (29) 

Truth-Functionality 

There is an alternative derivation of L~l from a SUL which throws further 
light on the result. Suppose we wish to make our SUL strongly truth-functional 
in the sense that for any elements x, y ~L, p(x v y), p(x ^ y), etc., for all the 
connectives, are equationally defined in terms of p(x) and p(y):  Then the 
arguments of Bellman and Giertz (1973) may be used to show that if the con- 
nectives are continuous in their arguments and PI through P14 hold, so do L1 
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through L6. LEM is clearly inconsistent with such truth-functionality and if 
LEM is considered essential (Sanford 1975), then a weaker requirement for 
truth-functionality is necessary, typically that the values of connectives between 
lattice elements that have no generating element is common are equationally 
defined. The assumption of statistical independence in Section 2 gives such a 
weakly truth-functional SUL with LEM, but one where the value of a compound 
statement depends on its structure not just on the values of its components. 

Whether there are situations in which strong truth-functionality can be 
reasonably demanded is clearly a semantic question. However, the simplicity 
of the resultant logic, if it can be assumed, is clearly attractive and is part of the 
explanation of the widespread attraction of "fuzzy logic." 

6. SEMANTICS FOR THE LOGICS IN TERMS OF POPULATION RESPONSES 

The preceding sections have established a formal relationship between 
probability and fuzzy logics, and have demonstrated that their communality 
in terms of basic axioms and concepts is more substantial than their differences. 
The basic difference may be regarded as stemming from the postulation of LEM 
in one and strong truth-functionality in the other. A further distinction arises if 
a probability logic is specialized to a "stochastic logic" by making it truth- 
functional through the assumption of statistical independence. However, the 
actual significance of these similarities and differences can only be determined 
in terms of their semantics. Giles (1975) has given one set of semantics that may 
be applied to a BPL and its specializations in terms of a "dialogue" or "game" 
between two opponents. Watanabe (1969) has developed a similar logic in terms 
of a valuation on a lattice commencing with specific semantics in terms of 
observations of events. This section puts forward a related semantics which 
provides a common interpretation of all the logics discussed in terms of the 
responses of population of entities that may, for the sake of intuition, be 
considered to be people, neurons, or some other element on which binary 
decisions may be based. 

Consider a population each member of which can "respond" to certain 
questions with a binary, yes or no, reply. The forms of question will involve 
evaluating a statement which belongs to the generating set, X, of a lattice, L, 
as defined in Sect. 3. For example, "is  this statement, x c X, true or false, or 
reasonable or unreasonable, or generally believed, etc." The valuation of x is 
defined to be the proportion of the population replying yes to the question. A 
compound statement in L is given a valuation in terms of the proportion of the 
population who say yes to each of x and y for terms of the form, x ^ y, or who 
say yes to either x or y for terms of the form, x v y, and similarly for more 
complex combinations of conjunction and disjunction. 

This is essentially a set-theoretic model for L as a (distributive) lattice of 
subsets of the population, and postulates P1 through P9 are clearly valid. A 
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distance measure, and hence valuations of logical equivalence, implication, and 
negation, may be defined as in P10 through P14. Thus, for any given population 
whose members are able to give one of two responses to a question about each 
element of X, there is a simple and well-defined procedure for ascertaining the 
valuation of any arbitrary statement in L, involving conjunction, disjunction, 
equivalence, implication, and negation, which is consistent with P1 through P15. 
Thus such a population, or a set of such populations, is a model for a distributive 
SUL. 

Consider now the additional constraints that must be placed upon the behavior 
of individuals within the population if the specializations for this basic logic 
analyzed previously are to be obtained. Note first that no constraints have been 
implied so far except the ability to answer a question about a member of X with a 
yes or no reply. I f  we also assume that members of the population are able to 
deal similarly with other statements in L other than those in X (i.e., compound 
statements), then it is necessary to postulate that each member of the population 
obeys the rules of inference of that fragment of PC concerned with conjunction, 
disjunction, and implication (Rescher, 1969, p. 333), The implications of the 
other additional postulates are: 

(a) P16 giving LEM and Rescher's probability logic--a member of the 
population must give opposite responses to a statement and its negation--or, 
if we do not assume that negation is meaningful in a question, we assume that the 
response to a question about the negation of an element of X is the opposite of 
that for a question about X. Dependent on what type of question we ask, for 
example about the truth of x, or about the reasonableness of x, this may, or 
may not, be an intuitively appropriate contraint. 

(b) Multiplication of the valuations for conjunction giving a "stochastic 
Iogic"--here we must assume that the responses of a certain type to a given 
question are scattered randomly among the population with no relationship 
between responses to questions about different elements of X. We could again 
produce this effect externally by chosing a number of different individuals at 
random to answer each question involved in our evaluating a compound, 
although it is difficult to see why we should want to do so! Independence of 
responses to questions within the population, however, might will be an 
intuitively reasonable hypothesis. 

(c) P17 giving a fuzzy logic--this would apply if members of the population 
each evaluated the questions according to the same criteria but applied a different 
threshold to the resulting evidence, or "feeling." The member with the lowest 
threshold would then always respond with a yes answer when any other member 
did, and so on up the scale of thresholds. This model, so different from that of 
independence of responses, also has its intuitive attractions. Reason (1969) 
has shown that the threshold applied by human beings in coming to a binary 
decision on an essentially analog variable seems to be associated with personality 



FUZZY AND PROBABILITY UNCERTAINTY LOGICS t67 

factors and a trait of the individual. If so, human populations would tend to show 
more a fuzzy, than a stochastic, logic in their decision making. Similarly the 
concept of uniformity in data processing but varying thresholds of sensitivity 
is a reasonable one for populations of cells. 

Thus there is a simple, intuitively meaningful semantic basis for a SUL that 
allows the formulation of constraints paralleling those in the formal logic that 
lead to Rescher's probability logic and its specialization to a truth-functionaI 
logic of statistical independence, or lead to the "fuzzy logic" Lel .  There is a 
further, independent dimension of semantic variation when we begin to specify 
what the population actually is. If we take it to be physical events falling into 
one of two categories (e.g., occurring or not occurring), then the logic is one of 
physical probability. This is the interpretation that is rejected in the fuzzy 
reasoning literature--a degree-of-membership of a 6-foot man of 0.5 to the set 
of tai l  men  certainly has no interpretation in terms of physical measurements of 
his height, e.g., "on 50 % of the occasions when we measure him he is over 6 feet 
tall!" However, note that, on the other hand, fuzzy logic connectives can readily 
occur with physical events--if, for example, one event is a necessary effect or a 
necessary cause of another. Thus the rejection is a question of linguistic modeling, 
not  one of fuzzy versus probability logics. 

An interpretation that does seem consistent with the use of SULs in modeling 
human linguistic reasoning is that the population is one of people. The 6-foot 
man is now reckoned by 50 % of the community to be tall. We are using popu- 
lation stereotypes to develop an underlying model of human linguistic behavior-- 
an eminently reasonable approach if the role of that behavior is to communicate 
in that community! As noted, Reason's (1969) results indicate that some degree 
of interconnection between responses leading to a fuzzy logic might be expected 
in these circumstances. 

None of these further specializations of the semantics is necessary. The 
abstract SUL and the general semantics provided by Giles, Watanabe, or those 
here, are complete in themselves. There is no need to interpret fuzzy reasoning 
in terms of either individual decision making or population stereotypes--many 
other conceptions are possible. However, the arguments of this section do illus- 
trate the lack of any basic conflict between fuzzy and probability logics in 
themselves. SUL and all its derivatives apply equally well to physical probabliity, 
vague reasoning, subjective probability, belief, and so on. The addition of 
requirements for LEM or strong truth-functionality do lead to different logics, 
but do so in all  these various interpretations. 

7. SUMMARY AND CONCLUSIONS 

The prime objective of this paper has been to clarify the essential differences 
between recent developments in logics of uncertainty based on fuzzy sets 
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theory and previous work with probabilistic foundations. At a formal level one 
may note that Rescher's probability logic (PL) and Lukasiewicz's Lgl have a 
common set of definitions (those of a SUL) for all connectives including 
implication. To obtain PL one adds the law of the excluded middle. To obtain 
Lgl one adds necessary implication between arbitrary propositions or strong 
truth-functionality. SUL and its derivatives, PL and L~I, have a common 
semantic model in terms Of binary responses from a population. It is only when 
this population is further specified (in greater detail than many of the formal 
developments require) that the differences in interpretation of "degrees of 
membership" appear that have been noted in the fuzzy reasoning literature. 
These may be attributed entirely to differences in interpretation leading to 
"physical" or "subjective" probability, for example, rather than to differences 
in the logics themselves. 

It has been shown that while a SUL with LENI cannot be strongly truth- 
functional (values of connectives equationally defined in terms of truth-values 
regardless of structure of PrOPositions ) it can be made weakly truth-functional 
(values of connectives all completely defined) by an assumption of statistical 
independence between propositions that have no generating element in common. 
It is worth noting that various alternative constraints to statistical independence 
may be added, including the min/max connectives of fuzzy logic (as was done by 
Sect. 2). In the resultant logic: LEM holds; the logic is truth-functional; and the 
required connectives hold between propositions that are not structurally related. 
This form of variant on a SUL seems to satisfy many of the requirements for a 
fuzzy logic put forward, for example, by Sanford (1975). 

In conclusion, one may suggest that in future, rather than debate what is the 
right set of connectives, one should turn the question about and ask what 
propositions are fuzzily related, which ones are statistically independent, which 
ones are mutually exclusive, etc., and use these considerations to define modalities 
in a SUL with, or without, LE1V[. In terms of the population model one might 
expect any real population to show a variety of forms of connective and the 
reasons for this variety would clearly throw much light on the structure of the 
population itself. The assumption of strong truth-functionality would then 
appear as a computational device simplifying calculations by enabling the 
structure of propositions to be forgotten once their truth values had been 
calculated--bounds could be obtained on the degree of approximation involved 
if the assumption were not reasonable. 
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