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This paper demonstrates that random phenomena, although most often treated in the
context of system malfunction, can play major constructive roles in the philosophy,
theory and application of cybernetic systems. A control-theoretic example is given to
show that a simple stochastic automaton can solve a regulator problem otherwise
requiring a recursive automaton, and insoluble for finite-state automata. An
identification-theoretic example is given to show that the assumption of causality in
modelling a simple acausal system can lead to models which grow in size, on average,
precisely at the rate of acquisition of observations. The significance and applications of
these results are discussed and illustrated. Finally, it is suggested that the interpretation of
stochastic automata theory in terms of system malfunction is far too restrictive in its
stimulation of theoretical developments. A wider view of the role of random phenomena
might aid the development of results and techniques which actually deliver what
automata theory has always seemed to promise.

1 Introduction
The main role of randomness in system theory is that of subsuming residual phenomena not
encompassed by the main model or theory, e.g. ‘let us assume a channel noise of…’ Systems are
analysed into a number of causal components and a number of statistically independent noise
sources (i.e. bearing no causal relationship). In application studies the noise sources invariably
play the role of defects, interference, unreliability, etc., and it is the task of the system engineer
to reduce the effects of such defects to acceptable levels.
This negative view of randomness is consistent with more fundamental concepts of knowledge
and science. Randomness shares with such basic phenomena as space and time the property that
the more one knows about it the less one’s knowledge of it becomes. That is, as one axiomatizes
a field, those elements which we make simplistic and primeval become inexplicable. In
particular our ‘scientific’ explanations are historically, and psychologically, causal. Random
phenomena are thought of as those at the boundary between causality and acausality where some
incomplete order can be extracted from nature. This boundary is regarded classically as that of
our ‘knowledge’, and one that should be continually expanded outwards so that the inexplicable
becomes random and, eventually, causal. The psychological force behind this assumed role of
randomness can be felt in Einstein’s remark that, ‘I can’t believe that God plays dice’—the
probabilistic interpretation of quantum mechanics had to be only a transient stage in our state of
knowledge.
There are, however, results in the literature which suggest that random phenomena have a more
constructive role to play in system theory: notably, Rabin’s (1963) demonstration that there are
regular events accepted by a two-state stochastic automaton which are only accepted by a
deterministic automaton with an arbitrarily large number of states, and the practical application
of this result in the stochastic computer (Gaines 1969). In relation to other problems, Hellman
and Cover (1971) have shown that for deterministic automata of arbitrary size there exist
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hypothesis-testing problems which they cannot solve, but for which a two-state stochastic
automaton has an arbitrarily small error. And Gaines (1967, 1969) has shown that there are
pattern classification that cannot be learnt by an adaptive-threshold-logic element with discrete,
bounded weights, unless the weight changes are probabilistic—an effect demonstrated in a
practical pattern recognizer by Clapper (1967).
All these results are characterized by the constructive role played by randomness. It appears not
as a defect to be overcome but rather as a crucial component necessary to a system’s operation.
This paper is concerned with further results on the essential and constructive roles of randomness
in system theory.

2 A control-theoretic result
Consider an abstract formulation of the problem of regulating a discrete dynamical system to
maintain its state within a prescribed region. Represent the system as an automaton, (I, P, S, σ,
π), where I is a finite input alphabet, P ≡ (0,1) is a binary set of outputs, S is a set of states, σ: SxI
→ S is the next-state function, and π: S → P is the output function. In this formulation π is a
performance function and the problem is to regulate the inputs to the automaton to cause its
output to become, and remain, 1.
Suppose that there is some distinguished element λ  ∈ I (the ‘zero’ input for the autonomous
system), and consider the following sets of states:-

€ 

W ≡ {s :π (s) =1}
A ≡ {s :∀n ≥ 0,σ(s,λn )∈W }
B ≡ {s :∃n :σ(s,λn )∈ A}

W is the subset of S in which it is desired that the state should reside; A is a weak attractor
within W, and B is its region of attraction (Bhatia and Szego 1967). We assume that both B and
S-B are non-empty so that the autonomous system has a region of local asymptotic stability but
is not asymptotically stable in the large, and consider the family of control automata whose
inputs are from P and whose outputs are in I which induce global stability. For this family to be
non-empty it is necessary that B be reachable (Arbib 1965) from S, that is:-

€ 

∀s∈ S, ∃u∈ FI :σ(s,u)∈ B

where FI is the free semigroup generated by I.
This problem is one of a class considered independently by Gold (1971) in his paper on
‘Universal Goal-seekers’, and by Gaines (1971) in a paper on stochastic automata. Both authors
demonstrate that no finite-state deterministic automaton can act as a universal regulator for this
class of problems. On the contrary it is shown that there is a finite-state dynamical system which
is universally insoluble for all such regulators with less than a given number of states. Both
authors give a construction for such a system which has the property that any action by the
regulator other than that which it actually does would immediately solve the problem. Gaines
calls such a system a frustration automaton and Gold terms the resulting behaviour strongly
worst!
Having established that there is no universal finite-state deterministic regulator for this class of
problems, the two papers diverge in an interesting fashion. Gold. demonstrates that there is a



3

univeral primitive-recursive (and hence potentially infinite-state) deterministic regulator, and
Gaines demonstrates that there is a universal two-state stochastic regulator. This equivalence
between recursive and stochastic solutions, together with the non-existence of finite-state
deterministic solutions, demonstrates the savings in memory and. complexity resulting from the
introduction of randomness. It suggests a role for random phenomena in both physical and
biological systems in that they enable a simple, finite-memory structure to achieve the same
control capability as a complex structure requiring unbounded memory.
A simple physical example of the principle involved is that of leveling the surface of a bowl of
sand. A controller using a fine probe to push down grains on the surface could probably
construct an appropriate trajectory through the state-space of the sand, but its storage
requirements would be massive and I would not like to have to construct the control algorithm!
Randomly tapping the bowl would be a rather more efficient means of achieving the same end.
This example also illustrates a difference in informational requirements since the probe
controller would require far more information as to the state of the sand (at least the locations of
high spots) than the random controller (only a signal when the sand is level enough).
A psychological example of the principle in the context of instructional systems has been given
by Gaines (1974) who uses it establish the existence of a universal trainer for any trainable
system. The use of performance feedback only by the trainer without other information as to the
structure or state of the trainee is given as an explanation of the effective operation of current
instructional systems, including computer-based instruction, which do not build a model of the
learner. The explanation of the observed phenomenon that many trainees are trainable is clearly
outside these arguments, and requires postulates such as Pask’s (1967) characterization of ‘man
as a system that needs to learn’.
It might be supposed that the stochastic regulator is very much less effective than the recursive
one in terms of the time taken to solve the problem. However, a simple example shows that this
is not so. Moore’s (1956) ‘combination lock’ problem involves an automaton whose output is
zero until the correct sequence of inputs is applied when it becomes one (the lock opens). At any
stage an incorrect input causes the automaton to re-initialize. Moore shows that a sequence of
length at least 2N-1 is necessary to guarantee to open a binary lock with N states. It may also be
shown that the mean length of sequence to open the lock with a random generator is 2N. Conway
(1971) emphasizes the complexity of the deterministic solution to this problem and recommends
the stochastic one. Theoretical upper bounds on the length of the deterministic solution are
ridiculously high, but simulation results suggest that the actual mean length is close to that for
the stochastic solution.
Another interesting example is the deadlock problem in resource allocation. Suppose a number
of automata are competing for the use of a single resource for a limited period. At each instant
each automaton either claims, or does not claim, the resource. If there is only one claimant it is
allocated the resource, otherwise all claims are rejected. It is clear that if the automata are
identical in structure and. commence in the same state then none of them will be allocated the
resource (at each instant either none or all will claim), regardless of the complexity of their
structure provided their behaviour is deterministic, An ‘operating system’ solution to the
problem would be to mediate all claims through some central resource allocation system. A
simpler solution that retains the independent distributed control of the individual automata is to
make them claim probabilistically.
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The stochastic regulator cannot be frustrated because it does not show consistent behaviour in
those circumstances where it is not achieving its goal and hence cannot remain in a fruitless limit
cycle. Ashbys (1960) ‘homeostat’ is a beautiful example of a mechanism embodying this
principle, and. he suggests that limit cycles are the rule rather than the exception in complex
coupled systems. Bremermann, Rogson and Salaff (1965) and Clapper (1967) have demonstrated
the ‘frustration’ effect in deterministic, or insufficiently stochastic, learning automata. In
particular, the results obtained formalize the requirement for an unconstrained random search
mode in designs for universal learning automata such as Andreae’s STeLLA (Gaines and
Andreae 1966; Andreae and Cashin 1969).
In conclusion one may suggest that is dangerous for the observer of a biological system to
assume that stochastic behaviour is ‘noise’ resulting from defects in the system or his imperfect
observations—it may be playing a constructive and vital role. Equally the system engineer
should consider that a stochastic element may provide a solution to problems otherwise requiring
complex algorithms and associated storage. The pedagogue may take heart from the argument
that the classic approach of presenting material in one way and, when it is not assimilated, trying
another, etc., is not so ‘unscientific’ and inefficient as it may appear

3 An identification-theoretic result
The psychological force of the assumption that an observed system is causal, illustrated by
Einstein’s remark, is very strong, and Michotte’s (1963) experiments indicate that causality may
be a very low level percept, similar in status to shape and colour. Some observations of human
problem-solving made in the course of the STeLLA project made apparent the importance of the
assumption of causality in cognitive tasks. One test environment for the learning machine was a
game of Nim played against a partially random player of variable optimality. To demonstrate
that the task was non-trivial for people also we built a NIM automaton with 4 lamps
(representing the number of matches left) and 3 keys (representing taking 1 to 3 matches) and a
‘reward’ light indicating that the game had been won. In practice human beings found the game
virtually impossible to learn in these circumstances, whereas in the normal form NIM is trivial.
Most of the problem in learning seemed to stem from the random nature of the opponent’s play.
Although this makes the game easier to win (the opponent makes fatal errors) it also makes the
behaviour of the automaton indeterminate. A hypothesis of randomness, or indeterminism, was
never introduced by human players, and the longer they played the more confused they became.
To investigate this further we built a simpler automaton with two keys and two lamps such that
one lamp came on for a short period whenever a key was depressed. The problem was to depress
the key under whatever lam was going to come on. In fact when a key was depressed either lamp
came on with equal probability. Again in tests with a wide range of subjects this random element
was never recognized and individuals were prepared to pit their wits against the automaton for
long periods of time.
Records were kept of verbal introspection as subjects played against the automaton, and it was
found that most people generated elaborate models which they felt were ‘not quite correct’. One
of the most interesting records is that of a behavioural scientist who played against the
automaton for some 30 minutes and kept a tally of occasions correct less occasions wrong. After
that period he was over 20 ahead on his count and announced he had a good strategy but felt he
should explore others and seek a better one. His accumulated count then rapidly declined and
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when it went negative he announced he was going back to his ‘good strategy’. The count
continued to decline, however, and he finally announced that the box contained a system which
modelled his strategy and then structured itself in the opposing form to outwit him! The
hypothesis of such a complex structure (a ‘frustration’ automaton in the sense of section 2) on
the basis of interaction with a simple two-state stochastic automaton suggested that the
assumption of causality was a dangerous one in system identification and that it would be fruitful
to investigate it more formally.
Gaines (1975) analyses a formal model of a modeller forming a causal model of some other
system based on his observations of its behaviour. The observed behaviour is some sequence
drawn from the union of input and output alphabets, and the length of a sequence of observations
is the number of output symbols in it. For any finite sequence of observations there will be an
unbounded number of finite-state machines whose input/output behaviour, starting from a
specified state, is identical to that observed. Out of these possible models there will be some such
that no other machine has a smaller number of states, and an optimal causal modeller is defined
as one who always chooses such a minimal state model.
Five results are established to describe the dynamic behaviour of such a modeller, in particular,
the relationship between the number of states in the model and the length of the observation
sequence:-
(1) The number of states in the models formed by an optimal causal modeller of a given

sequence of behaviour is a monotonic non-decreasing function of the length of that sequence.
(2) The number of states in the models formed by an optimal causal modeller of a sequence of

behaviour generated by a finite-state deterministic machine with M states cannot exceed M.
(3) An optimal causal modeller of an observed behaviour of length N will form a model with not

more than N states.
(4) There are observed behaviours of length N such that the model formed by an optimal causal

modeller has N states.
(5) The expected number of states in the model formed by an optimal causal modeller observing

a sequence of behaviour of length N may be at least N-log2N-l.
The first two ‘results’ are just a formalization of what we, and the modeller, expect to happen
when it am faced by a finite-state deterministic system—the number of states in the model will
increase up to final value which cannot exceed the number in the observed system. The next two
results show that whilst the number of states in the model cannot exceed the length of
observation it can grow as fast as the number of observations. Hence non-causal systems may
give rise to behaviour requiring indefinitely complex models. However, if the system whose
behaviour is observed is relatively simple, e.g. finite-state even if acausal, we might expect the
modeller to behave in a similar way to when modelling a causal system. Clearly a stochastic
source could generate isolated examples of the sequences noted in (4) requiring as many states in
the model as the number of observations. However, it seems reasonable to suppose that such
‘pathological’ sequences might be generated only infrequently by a finite-state stochastic
automaton.
Hence a more interesting characteristic of the observer’s behaviour would be, not the maximum
complexity model he might generate, but rather the expected number of states in the model (the
average complexity). This might have one of three possible behaviours as a function of the
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length of the observation sequence, N. The expected number of states in the model formed by an
optimal causal modeller of the behaviour of a finite-state stochastic automaton might be:-
(a) asymptotic to a finite number, i.e. closely similar to the situation when the behaviour

modelled is generated by a finite-state deterministic automaton.
(b) growing without limit but slower than the number of observations itself, e.g. as log N. One

might hypothesize that at least the ratio:-
RN = expected number of states/number of observations

would tend to zero with N.
(c) growing without limit at a rate similar to the maximum possible, N. This would imply that

nearly all the sequences generated were ‘pathological’ requiring maximum-size models
growing as fast as the number of observations.

The main result, (5), shows that case (c) occurs and that the ratio RN tends not to zero but to
unity. The assumption of causality when modelling acausal systems can lead to ridiculously
complex models which do no more than retain al past observations. The two-lamp, two-key,
automaton we used with human subjects generates sequences leading to result (5), thus
explaining the complexity of the models they described. One is tempted to paraphrase Einstein
and say that if one assumes God does not play dice them, when he does, one will obtain an over-
complex view of the universe.
This result indicates why some of the most attractive and apparently powerful techniques in
automata theory are never seen in their obvious applications. The Nerode construction (Arbib
and Zeiger 1969; Goguen 1973) gives a straightforward algorithm for determining the optimal
causal model (minimum-state finite automaton) corresponding to any sample of observed
behaviour. Philosophically we appear to be justified in assuming that knowledge of behaviour
can always be condensed into a canonical structure, and that all system-theoretic results can be
applied if expressed in terms of the state-space of such structures. In practice we should be able
to resolve the problems of treating general nonlinear systems, and in particular the whole of
behavioural psychology, by feeding behavioural data into a canonical modeller. Such an
aparoach seems to offer the possibility of a neutral behavioural science in which the structure of
reality is derived without preconceptions, assumptions or distortion. In a perfectly causal, closed
universe in which all information was available to us this would be so, but alas the slightest
acausality (Gaines 1975) destroys completely the validity of our modelling technique.
There are occasions when we wish to simulate complexity in a fairly simple system, for example
to enable an ELIZA-like system (Weizenbaum 1968) to pass the Turing test. An interactive
conversational computer program based on simple rules is rapidly dismissed as mechanical and
its rules identified unless some random selection is introduced. This is particularly relevant in
tutorial systems where one wishes to establish at least parity between (automatic) teacher and
student. Albritton’s comment that he is more likely to apply human terms to a robot if part of its
program is random is one of the more telling points in the discussion following Putnam’s (1964)
paper on the role of automata in psychology and philosophy. An example in the opposite
direction to these is the problem created by fluctuations in the response time at a terminal to an
interactive time-shared computer. The variations in response time with system loading are an
acausal phenomenon to the interactive user who may attempt to ascribe them to variations in his
own activity, e.g. error inputs, and become very disturbed by them (Gaines and Facey 1975).
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In conclusion, whilst the theory of (deterministic) automata is immediately applicable to digital
computers, its powerful and elegant results and techniques are severely limited in the normal
noisy world. We need equivalent results for non-determinate and stochastic automata, and must
not fall into the trap of assuming that we can obtain them by assuming that our observations can
be fitted into a causal framework—they can but only at the expense of diluting reality with
triviality.

4 Conclusions
It has been argued that random phenomena have a positive and. constructive role to play in the
philosophy, theory and application of cybernetic systems. Control-theoretic and information-
theoretic results, together with their implications, have been given which illustrate such a role. It
is suggested finally that the interpretation of stochastic automata theory in terms of system, or
observation, malfunction is far too restrictive in its stimulation of theoretical developments. A
wider view of the role of random phenomena might aid the development of results and.
techniques which actually deliver what automata theory has always seemed to promise.
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